Activity of Bacillus amyloliquefaciens MBI600 against soybean bacterioses

Author(s):  
R.I. Tarakanov ◽  
◽  
P.A. Vasilyev ◽  
K.S. Troshin ◽  
F.-S. U. Dzhalilov

the article presents data on the effectiveness of biological preparations based on bacteria of the genus Bacillus against pathogens of soybean bacteriosis. The results show high activity of the biofungicide based on Bacillus amyloliquefaciens MBI600 both in vitro and in the vegetative experiment against bacterial blight.

2016 ◽  
Author(s):  
Ryan J. Morris ◽  
Marieke Schor ◽  
Rachel M.C. Gillespie ◽  
Ana Sofia Ferreira ◽  
Keith M. Bromley ◽  
...  

AbstractBslA is a protein secreted by Bacillus subtilis which forms a hydrophobic film that coats the biofilm surface and renders it water-repellent. We have characterised three orthologues of BslA from Bacillus amyloliquefaciens, Bacillus licheniformis and Bacillus pumilus as well as a paralogue from B. subtilis called YweA. We find that the three orthologous proteins can substitute for BslA in B. subtilis and confer a degree of protection, whereas YweA cannot. The degree to which the proteins functionally substitute for native BslA correlates with their in vitro biophysical properties. Our results demonstrate the use of naturally-evolved variants to provide a framework for teasing out the molecular basis of interfacial self-assembly.


1975 ◽  
Vol 34 (02) ◽  
pp. 409-418 ◽  
Author(s):  
I. M Nilsson ◽  
S.-E Bergentz ◽  
U Hedner ◽  
K Kullenberg

SummaryGastric juice from 15 normals, 20 patients with gastric ulcer and 4 patients with erosive haemorrhagic gastroduodenitis was investigated in respect of its activity on unheated and heated fibrin plates and its content of FDP and plasminogen or plasmin with immunochemical methods. Gastric juice from normals showed no activity on unheated and heated fibrin plates, and no FDP or plasminogen could be demonstrated. In the patients with gastric ulcer the gastric juice showed little or no fibrinolytic activity on fibrin plates except in 2, who had regurgitation of duodenal juice and neutral pH of the juice. These patients had equally high activity on heated as on unheated plates and no plasmin could be demonstrated. It was shown that this activity was not due to fibrinolysis, but to non-specific proteolytic activity (probably trypsin). The patients with erosive haemorrhagic gastroduodenitis exhibited quite a different picture. The gastric juice from these patients showed extremely high activity on fibrin plates, the activity was higher on unheated than on heated plates. The activity was inhibited in vitro by addition of EACA and in vivo after administration of AMCA. The occurrence of plasmin could be demonstrated directly immunologically in the gastric juice. By comparison of plasmin and trypsin in various assays it could further be proved that the gastric juice in these cases contained plasminogen activator and plasmin. The patients with erosive haemorrhagic gastroduodenitis showed no increase in fibrinolysis in the blood, but low values for plasminogen and α2M, and the serum contained FDP. These findings in the blood and gastric juice were interpreted as signs of local fibrinolysis in the stomach and duodenum. There is reason to assume that this gastric fibrinolysis contributes substantially to the bleeding tendency. The effect of administration of AMCA on fibrinolytic activity and the haemorrhage lends support to the assumption of such a mechanism.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2452
Author(s):  
Chia-Jung Hsieh ◽  
Ju-Chuan Cheng ◽  
Chia-Jung Hu ◽  
Chi-Yang Yu

Capturing and storing CO2 is of prime importance. The rate of CO2 sequestration is often limited by the hydration of CO2, which can be greatly accelerated by using carbonic anhydrase (CA, EC 4.2.1.1) as a catalyst. In order to improve the stability and reusability of CA, a silica-condensing peptide (R5) was fused with the fastest known CA from Sulfurihydrogenibium azorense (SazCA) to form R5-SazCA; the fusion protein successfully performed in vitro silicification. The entrapment efficiency reached 100% and the silicified form (R5-SazCA-SP) showed a high activity recovery of 91%. The residual activity of R5-SazCA-SP was two-fold higher than that of the free form when stored at 25 °C for 35 days; R5-SazCA-SP still retained 86% of its activity after 10 cycles of reuse. Comparing with an uncatalyzed reaction, the time required for the onset of CaCO3 formation was shortened by 43% and 33% with the addition of R5-SazCA and R5-SazCA-SP, respectively. R5-SazCA-SP shows great potential as a robust and efficient biocatalyst for CO2 sequestration because of its high activity, high stability, and reusability.


2018 ◽  
Vol 6 (25) ◽  
Author(s):  
Thao D. Tran ◽  
Steven Huynh ◽  
Craig T. Parker ◽  
Robert Hnasko ◽  
Lisa Gorski ◽  
...  

ABSTRACT Here, we report the complete genome sequences of three Bacillus amyloliquefaciens strains isolated from alfalfa, almond drupes, and grapes that inhibited the growth of Listeria monocytogenes strain 2011L-2857 in vitro. We also report multiple gene clusters encoding secondary metabolites that may be responsible for the growth inhibition of L. monocytogenes.


2019 ◽  
Vol 16 (1) ◽  
pp. 01-13 ◽  
Author(s):  
Pragya Goyal ◽  
Pranoti Belapurkar ◽  
Anand Kar

Microbial assisted remediation is the ray of hope in the current scenario of tremendous heavy metal pollution. The indiscriminate release of heavy metal laden industrial effluents in the water bodies and soil is now manifesting itself in the form of life threatening health hazards to humans. The conventional heavy metal remediation strategies are not only expensive but are ineffective in low metal concentrations. Microbial assisted remediation of heavy metals has come forward as the cheap and easy alternative. Amongst the various bacterial genera actively involved in bioremediation of cadmium and nickel in the environment, genus Bacillus has shown remarkable ability in this respect owing to its various biochemical and genetic pathways. It can perform bioremediation using multiple mechanisms including biosorption and bioaccumulation. This genus has also been able to reduce toxicity caused by cadmium and nickel in eukaryotic cell lines and in mice, a property also found in probiotic genera like Lactobacillus and Bifidobacterium. This paper reviews the role of environmentally present and known probiotic species of genus Bacillus along with different probiotic genera for their various mechanisms involved for remediation of cadmium and nickel.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 348-349
Author(s):  
Nadezhda Terekhova ◽  
Lyudmila Galaktionova ◽  
Alexey Sizentsov ◽  
Olga Davydova ◽  
Hike Nikiyan

Abstract The research was supported by the Ministry of Science and Higher Education in accordance with the state assignment for Ural State Mining University No. 0833-2020-0008 ‘Development and environmental and economic substantiation of the technology for reclamation of land disturbed by the mining and metallurgical complex based on reclamation materials and fertilizers of a new type’. We obtain the scientific results by using funds of the Center for the collective use of scientific equipment of the Federal Scientific Center of biological systems and agricultural technologies of RAS as well (No Ross RU.0001.21 PF59, the Unified Russian Register of Centers for Collective Use - http://www.ckp-rf.ru/ckp/77384).The search for natural bioremediators to restore crop and grazing lands in conditions of the increased anthropogenic load is a relevant and promisingly significant area of research. Thus, we were tasked to assess the prospect of using the physiological and adaptive characteristics of microorganisms of the genus Bacillus as an active biosorbent of movable forms of lead from the substrate on the in vitro model.Soil isolates of microorganisms of the genus Bacillus extracted from samples from areas with increased lead levels were used to achieve our aim. Pb(NO3)2 solutions in the concentration range from 1 to 0.063M were used as the factor regulating the growth. Methods used in the work were: the method of agar basins, the nephelometric method, atomic-absorption spectroscopy, and atomic force microscopy. B. subtilis and B. cereus were isolated from soil samples. The maximum resistance to different concentrations of Pb(NO3)2 was revealed for B. subtilis. The presence of lead cations in the nutrient substrate significantly increased the population density to 26.0%. At the same time, the percentage of lead sorption in the initial stage of the stationary growth phase was 65.3% with the maximum localization on the surface structures of the cell membrane.


2020 ◽  
Vol 110 (2) ◽  
pp. 317-326 ◽  
Author(s):  
Ayaz Farzand ◽  
Anam Moosa ◽  
Muhammad Zubair ◽  
Abdur Rashid Khan ◽  
Muhammad Ayaz ◽  
...  

Sclerotinia sclerotiorum is a devastating necrotrophic pathogen that infects multiple crops, and its control is an unremitting challenge. In this work, we attempted to gain insights into the pivotal role of lipopeptides (LPs) in the antifungal activity of Bacillus amyloliquefaciens EZ1509. In a comparative study involving five Bacillus strains, B. amyloliquefaciens EZ1509 harboring four LPs biosynthetic genes (viz. surfactin, iturin, fengycin, and bacilysin) exhibited promising antifungal activity against S. sclerotiorum in a dual-culture assay. Our data demonstrated a remarkable upsurge in LPs biosynthetic gene expression through quantitative reverse transcription PCR during in vitro interaction assay with S. sclerotiorum. Maximum upregulation in LPs biosynthetic genes was observed on the second and third days of in vitro interaction, with iturin and fengycin being the highly expressed genes. Subsequently, Matrix-assisted laser desorption/ionization-time of flight-mass spectrometry analysis confirmed the presence of LPs in the inhibition zone. Scanning electron microscope analysis showed disintegration, shrinkage, plasmolysis, and breakdown of fungal hyphae. During in planta evaluation, S. sclerotiorum previously challenged with EZ1509 showed significant suppression in pathogenicity on detached leaves of tobacco and rapeseed. The oxalic acid synthesis was also significantly reduced in S. sclerotiorum previously confronted with antagonistic bacterium. The expression of major virulence genes of S. sclerotiorum, including endopolygalacturonase-3, oxalic acid hydrolase, and endopolygalacturonase-6, was significantly downregulated during in vitro confrontation with EZ1509.


1981 ◽  
Author(s):  
R Jordan ◽  
T Zuffi ◽  
M Fournel ◽  
D Schroeder

The tight binding affinity of antithrombin for heparin makes possible a relatively selective purification scheme based on salt elution from heparin-Sepharose. We have found, however, that purity can often be greatly increased if the elution is carried out with soluble heparin instead. This heparin can be removed from the antithrombin, either in whole or part, by a second affinity step on Concanavalin A Sepharose. The antithrombin, which binds to the matrix through its glycosidic moieties, retains its ability to bind heparin at physiological ionic strengths. Thus, the complex of antithrombin and heparin is readily isolated free of unbound heparin species. The complex can be eluted intact with low ionic strength buffers containing sugars which compete for binding to the lectin. Alternatively, the high activity heparin (400–500 units/mg) can be obtained separately by a 1 M NaCl wash which is then followed by a carbohydrate wash to obtain the purified antithrombin.We have made certain preliminary biochemical and anticoagulant characterizations of these materials. Not unexpectedly, both the high activity heparin and its complex with antithrombin show significantly greater in vitro potency in comparison to unfractionated heparin. In vivo anticoagulant efficacy, as evaluated in a rabbit infusion model, confirmed the in vitro findings and further suggests some potential therapeutic benefit may be derived from infusion of a preformed heparin-antithrombin complex.


2009 ◽  
Vol 296 (6) ◽  
pp. G1332-G1343 ◽  
Author(s):  
Annabelle Cesaro ◽  
Abakar Abakar-Mahamat ◽  
Patrick Brest ◽  
Sandra Lassalle ◽  
Eric Selva ◽  
...  

The acute phase of Crohn's disease (CD) is characterized by a large afflux of polymorphonuclear leukocytes (PMNL) into the mucosa and by the release of TNF-α. Conversion of inactive TNF-α into an active form requires the cleavage of a transmembrane TNF-α precursor by the TNF-α-converting enzyme (ADAM17), a protease mainly regulated by the tissue inhibitor of metalloproteinase 3 (TIMP3). The aim of the present study was to investigate in an in vitro model of PMNL transepithelial migration and in the intestinal mucosa of patients with CD the expression and regulation of ADAM17 and TIMP3 in intestinal epithelial cells (IEC). ADAM17 and TIMP3 expression was analyzed by Western blotting, RT-PCR, confocal microscopy, and immunohistochemistry by using the T84 model and digestive biopsies. ADAM17 expression in IEC was increased at a posttranscriptional level during the early phase (from 2 to 4 h) of PMNL transepithelial migration whereas TIMP3 was only increased 24 h later. TNF-α induced an early upregulation of ADAM17 in T84 cells, whereas PMNL adhesion, H2O2, or epithelial tight junction opening alone did not affect the amount of ADAM17. Immunohistochemistry of intestinal biopsies revealed that strong expression of ADAM17 was associated with a high activity of CD. In contrast, TIMP3 was very poorly expressed in these biopsies. ADAM17 and TIMP3 profiling did not correlated with the NOD2/CARD15 status. The ADAM17 activity was higher both in the early phase of PMNL transepithelial migration and in active CD. These results showed early posttranscriptional upregulation of ADAM17 in IEC linked to PMNL transepithelial migration and a high activity of CD.


2016 ◽  
Vol 24 (7) ◽  
pp. 587-595 ◽  
Author(s):  
Fabiana América Silva Dantas de Souza ◽  
Amanda Emmanuelle Sales ◽  
Pablo Eugênio Costa e Silva ◽  
Raquel Pedrosa Bezerra ◽  
Germana Michelle de Medeiros e Silva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document