scholarly journals Reconstruction of a Three-Dimensional Human Model from a Single Image

2021 ◽  
Vol 24 (3) ◽  
pp. 485-504
Author(s):  
Alexander Sergeevich Tarasov ◽  
Vlada Vladimirovna Kugurakova

This article focuses on improving the 3D reconstruction of a human model from a single pixel-aligned implicit function image presented by FaceBook Research. The drawbacks of the method are revealed, associated with limiting the quality of the original image, recommendations are presented to avoid its incorrect operation, and approaches to improve the original model are proposed, which increase the identity of the resulting model by 1.33 times. We also worked out the tactics of subsequent texture mapping and implementation of a set of animations.

2012 ◽  
Vol 157-158 ◽  
pp. 1008-1011
Author(s):  
Hui Huang Zhao ◽  
Yao Nan Wang ◽  
Ya Qi Sun ◽  
Jian Zhen Chen

Human face three-dimensional (3D) reconstruction is a challenging problem. In this paper, we propose a human face fast- 3D- reconstruction method based on image processing with a single image. Shape from shading (SFS) is chosen to reconstruct the human face. First, SFS theory is introduced. It has the advantage of fast 3D reconstruction and only need a single image. Secondly, because the noise will affect the 3D reconstruction result greatly, wavelet transform and wavelet packet transform are introduced and used in image denoising respectively. The experiment has shown that the method based on wavelet transform produces the best denoising result than wavelet packet transform. At last, a human face 3D reconstruction algorithm based on a single image is proposed. The experimental results show that a human face 3D model can be reconstructed in fast by proposed algorithm.


Author(s):  
J. Xiong ◽  
S. Zhong ◽  
L. Zheng

This paper presents an automatic three-dimensional reconstruction method based on multi-view stereo vision for the Mogao Grottoes. 3D digitization technique has been used in cultural heritage conservation and replication over the past decade, especially the methods based on binocular stereo vision. However, mismatched points are inevitable in traditional binocular stereo matching due to repeatable or similar features of binocular images. In order to reduce the probability of mismatching greatly and improve the measure precision, a portable four-camera photographic measurement system is used for 3D modelling of a scene. Four cameras of the measurement system form six binocular systems with baselines of different lengths to add extra matching constraints and offer multiple measurements. Matching error based on epipolar constraint is introduced to remove the mismatched points. Finally, an accurate point cloud can be generated by multi-images matching and sub-pixel interpolation. Delaunay triangulation and texture mapping are performed to obtain the 3D model of a scene. The method has been tested on 3D reconstruction several scenes of the Mogao Grottoes and good results verify the effectiveness of the method.


2013 ◽  
Vol 311 ◽  
pp. 153-157
Author(s):  
Xing Gao ◽  
Ning Yu ◽  
Ming Hong Liao

Online rapid three-dimensional reconstruction is widely applied in virtual reality, heritage preservation, bio-engineering and architectural fields. The error caused by image quality or manual import is the main reason for the low quality of model details when applying current reconstruction methods while meeting the time premise. To solve this problem, the paper proposes a fast and smooth carving algorithm for online 3d reconstruction by joining the filter. By applying the method, you can get a more realistic and smooth three-dimensional reconstruction results. First, we convert the input point cloud to meshes through Delaunay tetrahedralisation. Then we reconstruct the model with the space carving algorithm with the filter to obtain the result. The experiment result shows our method exceeds existing methods while meeting the time constraints under the premise at the same time.


2010 ◽  
Vol 20-23 ◽  
pp. 487-492 ◽  
Author(s):  
Ze Tao Jiang ◽  
Qing Hui Xiao ◽  
Ling Hong Zhu

A new feature points extraction method is presented, which consider pixel as hexagonal. The method quasi increases the density of image pixel, expands the dynamic range of feature point extraction, increases the number of the features and resolves the problem of deformation of reconstruction which was leaded by lack of feature points. Firstly, the method was successful applied to sift operator of features extraction in this paper and then use dense stereo matching method to find the matching point of the image sequences. Secondly, through the RANSAC method to eliminate mistake matches, and by the camera matrix, calculate the corresponding points’ three-dimensional coordinates of space. Finally, the 3D model can be established through the partition merging triangulation method and texture mapping. Experimental results show that this method can get more accurate matches pairs and achieve a satisfactory effect of 3D reconstruction.


2021 ◽  
Vol 15 ◽  
Author(s):  
Marina Scardigli ◽  
Luca Pesce ◽  
Niamh Brady ◽  
Giacomo Mazzamuto ◽  
Vladislav Gavryusev ◽  
...  

The combination of tissue clearing techniques with advanced optical microscopy facilitates the achievement of three-dimensional (3D) reconstruction of macroscopic specimens at high resolution. Whole mouse organs or even bodies have been analyzed, while the reconstruction of the human nervous system remains a challenge. Although several tissue protocols have been proposed, the high autofluorescence and variable post-mortem conditions of human specimens negatively affect the quality of the images in terms of achievable transparency and staining contrast. Moreover, homogeneous staining of high-density epitopes, such as neuronal nuclear antigen (NeuN), creates an additional challenge. Here, we evaluated different tissue transformation approaches to find the best solution to uniformly clear and label all neurons in the human cerebral cortex using anti-NeuN antibodies in combination with confocal and light-sheet fluorescence microscopy (LSFM). Finally, we performed mesoscopic high-resolution 3D reconstruction of the successfully clarified and stained samples with LSFM.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7045
Author(s):  
Fupei Wu ◽  
Shukai Zhu ◽  
Weilin Ye

Three-dimensional (3D) reconstruction and measurement are popular techniques in precision manufacturing processes. In this manuscript, a single image 3D reconstruction method is proposed based on a novel monocular vision system, which includes a three-level charge coupled device (3-CCD) camera and a ring structured multi-color light emitting diode (LED) illumination. Firstly, a procedure for the calibration of the illumination’s parameters, including LEDs’ mounted angles, distribution density and incident angles, is proposed. Secondly, the incident light information, the color distribution information and gray level information are extracted from the acquired image, and the 3D reconstruction model is built based on the camera imaging model. Thirdly, the surface height information of the detected object within the field of view is computed based on the built model. The proposed method aims at solving the uncertainty and the slow convergence issues arising in 3D surface topography reconstruction using current shape-from-shading (SFS) methods. Three-dimensional reconstruction experimental tests are carried out on convex, concave, angular surfaces and on a mobile subscriber identification module (SIM) card slot, showing relative errors less than 3.6%, respectively. Advantages of the proposed method include a reduced time for 3D surface reconstruction compared to other methods, demonstrating good suitability of the proposed method in reconstructing surface 3D morphology.


2020 ◽  
Vol 10 (3) ◽  
pp. 1183 ◽  
Author(s):  
Fusheng Zha ◽  
Yu Fu ◽  
Pengfei Wang ◽  
Wei Guo ◽  
Mantian Li ◽  
...  

Three-dimensional reconstruction and semantic understandings have attracted extensive attention in recent years. However, current reconstruction techniques mainly target large-scale scenes, such as an indoor environment or automatic self-driving cars. There are few studies on small-scale and high-precision scene reconstruction for manipulator operation, which plays an essential role in the decision-making and intelligent control system. In this paper, a group of images captured from an eye-in-hand vision system carried on a robotic manipulator are segmented by deep learning and geometric features and create a semantic 3D reconstruction using a map stitching method. The results demonstrate that the quality of segmented images and the precision of semantic 3D reconstruction are effectively improved by our method.


2021 ◽  
Vol 13 (17) ◽  
pp. 3458
Author(s):  
Chong Yang ◽  
Fan Zhang ◽  
Yunlong Gao ◽  
Zhu Mao ◽  
Liang Li ◽  
...  

With the progress of photogrammetry and computer vision technology, three-dimensional (3D) reconstruction using aerial oblique images has been widely applied in urban modelling and smart city applications. However, state-of-the-art image-based automatic 3D reconstruction methods cannot effectively handle the unavoidable geometric deformation and incorrect texture mapping problems caused by moving cars in a city. This paper proposes a method to address this situation and prevent the influence of moving cars on 3D modelling by recognizing moving cars and combining the recognition results with a photogrammetric 3D modelling procedure. Through car detection using a deep learning method and multiview geometry constraints, we can analyse the state of a car’s movement and apply a proper preprocessing method to the geometrically model generation and texture mapping steps of 3D reconstruction pipelines. First, we apply the traditional Mask R-CNN object detection method to detect cars from oblique images. Then, a detected car and its corresponding image patch calculated by the geometry constraints in the other view images are used to identify the moving state of the car. Finally, the geometry and texture information corresponding to the moving car will be processed according to its moving state. Experiments on three different urban datasets demonstrate that the proposed method is effective in recognizing and removing moving cars and can repair the geometric deformation and error texture mapping problems caused by moving cars. In addition, the methods proposed in this paper can be applied to eliminate other moving objects in 3D modelling applications.


2020 ◽  
Vol 3 (2) ◽  
pp. 108-113
Author(s):  
Moch.d Kholil ◽  
Ismanto Ismanto ◽  
M. Nur Fu’ad

With the development of the field of Information and Computer Technology (ICT), three-dimensional technology (3D) is also growing rapidly. Currently, the need to visualize 3D objects is widely used in animation and graphics applications, architecture, education, cultural recognition and virtual reality. 3D modeling of historical buildings has become a concern in recent years. 3D reconstruction is a documentation effort for reconstruction or restoration if the building is destroyed. By using a 3D model reconstruction approach based on multiple images using the Structure From Motion (SFM) and Multi View Stereo (MVS) algorithm, it is hoped that the 3D modeling results can be used as an effort to preserve 3D objects in the cultural heritage area of Penataran Temple. This research was conducted by taking an object in the form of photos as many as 61 pictures in the area of ​​the Blitar Penataran Temple. The resulting photos are reconstructed into a 3D model using the Structure From Motion algorithm in the meshroom. In this study, a test was carried out on the original image with the compressed image for reconstruction to be compared to the 3D reconstruction process from the two input data. From 61 images processed using the Structure Form Motion algorithm, 33 camera pose and 3D point data were obtained, both original and compressed images. For the number of iterations the compressed image is 1.4% less than the original image and takes 43.53% faster than the original image.  


Author(s):  
S. Khadpe ◽  
R. Faryniak

The Scanning Electron Microscope (SEM) is an important tool in Thick Film Hybrid Microcircuits Manufacturing because of its large depth of focus and three dimensional capability. This paper discusses some of the important areas in which the SEM is used to monitor process control and component failure modes during the various stages of manufacture of a typical hybrid microcircuit.Figure 1 shows a thick film hybrid microcircuit used in a Motorola Paging Receiver. The circuit consists of thick film resistors and conductors screened and fired on a ceramic (aluminum oxide) substrate. Two integrated circuit dice are bonded to the conductors by means of conductive epoxy and electrical connections from each integrated circuit to the substrate are made by ultrasonically bonding 1 mil aluminum wires from the die pads to appropriate conductor pads on the substrate. In addition to the integrated circuits and the resistors, the circuit includes seven chip capacitors soldered onto the substrate. Some of the important considerations involved in the selection and reliability aspects of the hybrid circuit components are: (a) the quality of the substrate; (b) the surface structure of the thick film conductors; (c) the metallization characteristics of the integrated circuit; and (d) the quality of the wire bond interconnections.


Sign in / Sign up

Export Citation Format

Share Document