scholarly journals The effect of loading direction on the compressive behaviour of a 3D printed cement-based material

Author(s):  
Behzad Zahabizadeh ◽  
Vítor M. C. F. Cunha ◽  
João Pereira ◽  
Cláudia Gonçalves

<p>Nowadays, additive manufacturing is being widely employed in several areas and is starting to be considered for the construction sector amongst the digital construction trend. The advantages that the additive manufacturing techniques can bring over the traditional construction methods are propelling multiple research projects within the field of 3D concrete printing. Technologies used for printing, material compositions and their rheological and mechanical properties are some of the research areas on 3D concrete printing. In this work, it is used a wet extrusion method for printing a cement-based mortar mixture. The compressive behaviour of printed specimens was evaluated based on the direction of loading. The results showed that with a proper printing process and rheological properties, in the case of the current mid-strength matrix, the effect of the layers interfacial behaviour on the compressive behaviour of printed specimens was reduced.</p>

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Magda Silva ◽  
Isabel S. Pinho ◽  
José A. Covas ◽  
Natália M. Alves ◽  
Maria C. Paiva

AbstractAdditive manufacturing techniques established a new paradigm in the manufacture of composite materials providing a simple solution to build complex, custom designed shapes. In the biomedical field, 3D printing enabled the production of scaffolds with patient-specific requirements, controlling product architecture and microstructure, and have been proposed to regenerate a variety of tissues such as bone, cartilage, or the nervous system. Polymers reinforced with graphene or graphene derivatives have demonstrated potential interest for applications that require electrical and mechanical properties as well as enhanced cell response, presenting increasing interest for applications in the biomedical field. The present review focuses on graphene-based polymer nanocomposites developed for additive manufacturing fabrication, provides an overview of the manufacturing techniques available to reach the different biomedical applications, and summarizes relevant results obtained with 3D printed graphene/polymer scaffolds and biosensors.


2019 ◽  
Author(s):  
Noha Hamada Mohamed ◽  
Hossam Kandil ◽  
Iman Ismail Dakhli

Abstract In dentistry, 3D printing already has diverse applicability, and holds a great deal of promise to make possible many new and exciting treatments and approaches to manufacturing dental restorations. Better availability, shorter processing time, and descending costs have resulted in the increased use of RP. Concomitantly the development of medical applications is expanding. (Zaharia et al., 2017)Many different printing technologies exist, each with their own advantages and disadvantages. Unfortunately, a common feature of the more functional and productive equipment is the high cost of the equipment, the materials, maintenance, and repair, often accompanied by a need for messy cleaning, difficult post-processing, and sometimes onerous health and safety concerns (Dawood et al., 2015)Low-cost 3D printers represent a great opportunity in the dental and medical field, as they could allow surgeons to use 3D models at a very low cost and, therefore, democratize the use of these 3D models in various indications. However, efforts should be made to establish a unified validation protocol for low-cost RP 3D printed models, including accuracy, reproducibility, and repeatability tests. Asaumi et al., suggested that dimensional changes may not affect the success of surgical applications if such changes are within a 2% variation .However, the proposed cut-off of 2% should be furthermore discussed, as the same accuracy may be not required for all types of indications. (Silva et al., 2008; Maschio et al., 2016)This aim of the present study is to evaluate the dimensional accuracy of the 3D printed mandibular models fabricated by two different additive manufacturing techniques, using highly precise one as selective laser sintering (SLS) and a low-cost one as fused filament fabrication and whether they are both comparable in terms of precision. In addition to evaluation of dimensional accuracy of linear measurements of the mandible in CBCT scans.7 mandibular models will be recruited. Radio-opaque markers of gutta-percha balls will be applied on the model to act as guide pointsTen linear measurements (5 long distances: Inter-condylar, inter-coronoidal, inter-mandibular notch, length of left ramus, length of right ramus; as well as 5 short distances: Length of the body of the mandible at midline, length of the body of the mandible in the area of last left molar, as well as that of the last right molar, the distance between the tip of right condyle to the tip of the right coronoid, as well as that of their left counterparts) will be obtained using digital calliper, to act as the reference standard later. Scanning of the model by CBCT will be next , 3D printing of the scanned image using SLS and FFF printers will be done. Recording of same linear measurment will be done on printed models. Comparison of the recorded values vs reference standard is the last step


2019 ◽  
Vol 4 (4) ◽  
pp. 2473011419S0042
Author(s):  
Joseph Tracey ◽  
Selene Parekh

Category: Trauma, Emerging Technology Introduction/Purpose: Modern day management of segmental defects of the tibia shaft (SDTS) involve autologous nonvascularized grafts, autologous vascularized contralateral fibula grafts, as well as bone transport distraction osteogenesis, however single stage titanium cages with adjuvant biologics continue to demonstrate advantages. With the development of advanced additive manufacturing further modalities such as complex variable lattice structure and submicron texture may be incorporated into custom fit implants. We aim to further investigate the potential of this technology on osteoinduction, and hypothesize early bone in-growth. Methods: A retrospective analysis was performed on 3 patients undergoing custom cage implantation for SDTS. All three patients were male with an average age of 60, 2 patients were diabetic, and one was a smoker. All three cases were performed in the setting of post-infection salvage. Pertinent demographic and clinical history was retrieved through the medical record. Results: All three cases were uncomplicated in the post-surgical period, and early bone in-growth was demonstrated in successive follow-ups. One case was single-staged and built into a prior total ankle arthroplasty, the next was a deformity correcting intramedullary rod that became infected requiring two-stage salvage with an antibiotic spacer and subsequent custom cage with Intramedullary rod supplementation, and the third case was a two-stage trauma salvage initially using an antibiotic spacer with subsequent custom cage implantation. Conclusion: 3D printed custom cages were found to be a safe and efficacious option for management of SDTS, with demonstrated early bone in-growth. Considering the incorporation of advanced additive manufacturing techniques, strong implementations may be present for salvage cases.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Gabriele Baronio ◽  
Paola Volonghi ◽  
Alberto Signoroni

In the rehabilitation field, the use of additive manufacturing techniques to realize customized orthoses is increasingly widespread. Obtaining a 3D model for the 3D printing phase can be done following different methodologies. We consider the creation of personalized upper limb orthoses, also including fingers, starting from the acquisition of the hand geometry through accurate 3D scanning. However, hand scanning procedure presents differences between healthy subjects and patients affected by pathologies that compromise upper limb functionality. In this work, we present the concept and design of a 3D printed support to assist hand scanning of such patients. The device, realized with FDM additive manufacturing techniques in ABS material, allows palmar acquisitions, and its design and test are motivated by the following needs: (1) immobilizing the hand of patients during the palmar scanning to reduce involuntary movements affecting the scanning quality and (2) keeping hands open and in a correct position, especially to contrast the high degree of hypertonicity of spastic subjects. The resulting device can be used indifferently for the right and the left hand; it is provided in four-dimensional sizes and may be also suitable as a palmar support for the acquisition of the dorsal side of the hand.


2019 ◽  
Vol 28 (03n04) ◽  
pp. 1940016
Author(s):  
Ajibayo Adeyeye ◽  
Aline Eid ◽  
Jimmy Hester ◽  
Syed Abdullah Nauroze ◽  
Bijan Tehrani ◽  
...  

This publication provides an overview of additive manufacturing techniques including Inkjet, 3D and 4D printing methods. The strengths, opportunities and advantages of this array of manufacturing techniques are evaluated at different scales. We discuss first the applicability of additive manufacturing techniques at the device scale including the development of origami inspired tunable RF structures as well as the development of skin-like conformal, flexible systems for wireless/IoT, Smartag and smart city applications. We then discuss application at the package scale with on package printed antennas and functional packaging applications. Following this, there is a discussion of additive manufacturing techniques in applications at the die scale such as 3D printed interconnects. The paper is concluded with an outlook on future advancements at the component scale with the potential for fully printed passive components.


2020 ◽  
Vol 110 (11-12) ◽  
pp. 752-757
Author(s):  
Lukas Weiser ◽  
Marco Batschkowski ◽  
Niclas Eschner ◽  
Benjamin Häfner ◽  
Ingo Neubauer ◽  
...  

Die additive Fertigung schafft neue Gestaltungsfreiheiten. Im Rahmen des Prototypenbaus und der Kleinserienproduktion kann das Verfahren des selektiven Laserschmelzens genutzt werden. Die Verwendung in der Serienproduktion ist bisher aufgrund unzureichender Bauteilqualität, langen Anlaufzeiten sowie mangelnder Automatisierung nicht im wirtschaftlichen Rahmen möglich. Das Projekt „ReAddi“ möchte eine erste prototypische Serienfertigung entwickeln, mit der additiv gefertigte Bauteile für die Automobilindustrie wirtschaftlich produziert werden können. Additive manufacturing (AM) offers new freedom of design. The selective laser-powderbed fusion (L-PBF) process can be used for prototyping and small series production. So far, it has not been economical to use it on a production scale due to insufficient component quality, long start-up times and a lack of automation. The project ReAddi aims to develop a first prototype series production to cost-effectively manufacture 3D-printed components for the automotive industry.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1940
Author(s):  
Muhammad Usman Naseer ◽  
Ants Kallaste ◽  
Bilal Asad ◽  
Toomas Vaimann ◽  
Anton Rassõlkin

This paper presents current research trends and prospects of utilizing additive manufacturing (AM) techniques to manufacture electrical machines. Modern-day machine applications require extraordinary performance parameters such as high power-density, integrated functionalities, improved thermal, mechanical & electromagnetic properties. AM offers a higher degree of design flexibility to achieve these performance parameters, which is impossible to realize through conventional manufacturing techniques. AM has a lot to offer in every aspect of machine fabrication, such that from size/weight reduction to the realization of complex geometric designs. However, some practical limitations of existing AM techniques restrict their utilization in large scale production industry. The introduction of three-dimensional asymmetry in machine design is an aspect that can be exploited most with the prevalent level of research in AM. In order to take one step further towards the enablement of large-scale production of AM-built electrical machines, this paper also discusses some machine types which can best utilize existing developments in the field of AM.


Author(s):  
Chen Hu ◽  
Malik Haider ◽  
Lukas Hahn ◽  
Mengshi Yang ◽  
Robert Luxenhofer

Hydrogels that can be processed with additive manufacturing techniques and concomitantly possess favorable mechanical properties are interesting for many advanced applications. However, the development of novel ink materials with high...


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Liang Wu ◽  
Stephen Beirne ◽  
Joan-Marc Cabot Canyelles ◽  
Brett Paull ◽  
Gordon G. Wallace ◽  
...  

Additive manufacturing (3D printing) offers a flexible approach for the production of bespoke microfluidic structures such as the electroosmotic pump. Here a readily accessible fused filament fabrication (FFF) 3D printing...


Sign in / Sign up

Export Citation Format

Share Document