Comparative analysis and applicability of optimal composite sections for small to middle span girder bridges

Author(s):  
Andjelko Vlasic ◽  
Mladen Srbić ◽  
Gordana Hrelja Kovačević

<p>Paper reports findings from parametric analysis of open section constant height composite bridges with considered spans ranging from 20 to 70 m (for larger spans closed box girder section is recommended). For these spans, girder structural system is analyzed for permanent and traffic loads, and thus steel quantity determined according to Eurocode limit states. For each span, possible sections comprise various “<span>I</span>” girder types and various number of girders determined from variable bridge width, distinguishing two groups of sections – sections with only two main girders (comprising hunched deck plate of variable thickness) and sections with more than two girders (comprising constant thickness deck plate). Other considered parameters are section height, steel flange width and occurrence of web stiffeners for buckling verification. Analysis is performed on finite element models, according to typical construction stages, where composite section is activated only for loads applied after in‐situ concreating of deck slab. For each variable set, needed steel quantity is recorded. Graphical representation of all results is plotted in diagrams, showing section types and steel quantity for a given range of span lengths. In conclusion, comments are given for use of composite cross sections according to the bridge span length and width.</p>

2021 ◽  
Vol 37 (1_suppl) ◽  
pp. 1626-1651
Author(s):  
John E Lens M.EERI ◽  
Mandar M Dewoolkar ◽  
Eric M Hernandez M.EERI

This article describes the approach, methods, and findings of a quantitative analysis of the seismic vulnerability in low-to-moderate seismic hazard regions of the Central and Eastern United States for system-wide assessment of typical multiple span bridges built in the 1950s through the 1960s. There is no national database on the status of seismic vulnerability of bridges, and thus no means to estimate the system-wide damage and retrofit costs for bridges. The study involved 380 nonlinear analyses using actual time-history records matched to four representative low-to-medium hazard target spectra corresponding with peak ground accelerations from approximately 0.06 to 0.3 g. Ground motions were obtained from soft and stiff site seismic classification locations and applied to models of four typical multiple-girder with concrete bent bridges. Multiple-girder bridges are the largest single category, comprising 55% of all multiple span bridges in the United States. Aging and deterioration effects were accounted for using reduced cross-sections representing fully spalled conditions and compared with pristine condition results. The research results indicate that there is an overall low likelihood of significant seismic damage to these typical bridges in such regions, with the caveat that certain bridge features such as more extensive deterioration, large skews, and varied bent heights require bridge-specific analysis. The analysis also excludes potential damage resulting from liquefaction, flow-spreading, or abutment slumping due to weak foundation or abutment soils.


Author(s):  
A.A. Chernyaev ◽  

The paper considers a method of geometric modeling applied when solving basic twodimensional problems of the theory of elasticity and structural mechanics, in particular the applied problems of engineering. The subject of this study is vibrations of thin elastic parallelogram plates of constant thickness. To determine a basic frequency of vibrations, the interpolation method based on the geometric characteristic of the shape of plates (membrane, cross sections of a rod) is proposed. This characteristic represents a ratio of interior and exterior conformal radii of the plate. As is known from the theory of conformal mappings, conformal radii are those obtained by mapping of a plate onto the interior and exterior of a unit disk. The paper presents basic terms, tables, and formulas related to the considered geometric method with a comparative analysis of the curve diagrams obtained using various interpolation formulas. The original computer program is also developed. The main advantage of the proposed method of determining the basic frequency of plate vibrations is a graphic representation of results that allows one to accurately determine the required solution on the graph among the other solutions corresponding to the considered case of parallelogram plates. Although there are many known approximate approaches, which are used to solve the considered problems, only geometric modeling technique based on the conformal radii ratio gives such an opportunity.


2019 ◽  
Vol 5 (4) ◽  
pp. 73-95
Author(s):  
Nikolai A. Senkin ◽  
Aleksandr S. Filimonov ◽  
Kirill E. Kharitonov ◽  
Vitaliy V. Yakovlev ◽  
Elizaveta O. Bondareva ◽  
...  

As part of student research at the St. Petersburg University of architecture and construction, alternative proposals are being developed for the creation of a circumferential high-speed highway with a total length of 147.2 km. Тhe scheme is proposed in the form of a polygon with HUB in the nodes and consists of three main parts: 1 above-ground (62.6 km), 2 above-water (29.6 km) and 3 surface-underground (55.0 km). The main tracks are located in a four-tube steel beam, each tube of which is organized by the technology of vacuum tube transport with a pressure of 10% of the normal for high-speed passenger trains on a magnetic levitation cushion using a linear traction motor (Maglev system). The rail base of the 1520 mm gauge is located along the entire length of the track, both in parking lots, acceleration and braking zones, and on the main high-speed sections for movement with a maximum speed of 500 km per hour. The main direction of research was the development of load-bearing structures that provide the necessary functionality, reliability and safety of structures. In order to reduce the noise impact on the metropolis, overcome numerous artificial and natural obstacles, improve anti-terrorist protection, the main level of the rail track for the above-ground and above-water structures was adopted at +88.00 in the Baltic elevation system. Calculations of variants with determination of internal forces in elements and movements of nodes with use of the program complex SCAD Office 21.1are executed, when accounting for the full range of loads taking into account dynamic effects and non-linearity. The selection of cross-sections of elements according to the method of limit states according to the current norms is carried out. The advantage of the arch-cable-stayed variant with a span of 360 m in strength, stability, stiffness and vertical size (height of supports) is shown. The continuation of research and design work on this topic should lead to the emergence of a district high-speed transport system at the borders of communication between St. Petersburg and the Leningrad region with passenger traffic, quite comparable to the metro line. Aim: To develop a district high-speed transport system at the borders of St. Petersburg and Leningrad region with passenger traffic comparable to the metro line. Materials and Methods: Using the software package "SCAD Office 21.1", the trestle structures are calculated for the combination of operating loads, forces and influences, including the consideration of dynamic aspects and nonlinearity, as well as the selection of cross-sections of elements by the method of limit states. To determine the optimal trestle structures of high-speed highways, namely high-rise and long-length metal structures supporting the overpass beam, calculations with the selection of cross sections of four variants of cable-stayed systems (arch-cable-stayed; cable-stayed rod with inclined cables and steel lattice pylons; the same, steel pipe-concrete pylons; cable-stayed rod system with suspensions according to the patent US5950543 (A). Results: the results of the trial design adopted arch-cable option with a span of 360 m according to the criterion of metal consumption, the consumption of steel amounted to 20.9 tons per 1 m length of highway. Conclusion: the estimated volume of passenger traffic per day for the four-track high-speed line will be 280 thousand passengers, and 102 million passengers per year, which is quite comparable to this figure for the metro line.


Author(s):  
Takhir MUKHAMEDIYEV

The article presents information about the changes made to the code of rules for the design of concrete structures reinforced with polymer composite reinforcement. New rules for the formation of relative deformations at the base point of a two-line diagram of concrete under axial tension, used to calculate reinforced concrete elements for the second group of limit states, are described. The rules for calculating re-reinforced structures of T-or I-beam cross-sections with a shelf in a compressed zone by the method of limiting forces are presented. The rules for taking into account the inelastic properties of concrete of the stretched zone when determining the elastic- plastic moment of resistance for the extreme stretched fibre of concrete with a rectangular cross-section and a T-shape with a shelf located in the compressed zone are clarified.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Bin Wang ◽  
Wenzhe Cai ◽  
Qingxuan Shi

Sectional deformation quantities, such as curvature and ductility, are of prime significance in the displacement-based seismic design and performance evaluation of structural members. However, few studies on the estimates of curvatures at different limit states have been performed on asymmetric flanged walls. In this paper, a parametric study was performed for a series of T-shaped wall cross-sections based on moment-curvature analyses. By investigating the effects of the axial load ratio, reinforcement content, material properties, and geometric parameters on curvatures at the yield and ultimate limit state, we interpret the variation in curvature with different influencing factors in detail according to the changes of the neutral axis depth. Based on the regression analyses of the numerical results of 4941 T-shaped cross-sections, simple expressions to estimate the yield curvature and ultimate curvature for asymmetric flanged walls are developed, and simplified estimates of the ductility capacity including curvature ductility and displacement ductility are further deduced. By comparing with the experimental results, we verify the accuracy of the proposed formulas. Such simple expressions will be valuable for the determination of the displacement response of asymmetric flanged reinforced concrete walls.


2018 ◽  
Vol 18 (4) ◽  
pp. 362-378
Author(s):  
Yu. A. Gosteev ◽  
A. D. Obukhovskiy ◽  
S. D. Salenko

Introduction. The technique of numerical modeling of the transverse flow over span structures of bridges on the basis of the two-dimensional URANS (Unsteady Reynolds-averaged Navier-Stokes) approach used in the modern methods and software packages for computational fluid dynamics is verified. The work objective was debugging and experimental substantiation of this technique with the use of the database on the aerodynamic characteristics of the cross-sections of span structures of girder bridges of standard shapes pre-developed by the authors.Materials and Methods. A numerical simulation of the transverse flow of low-turbulent (smooth) and turbulent air flows around the bridge structures in a range of practically interesting attack angles is carried out. SST  k − ω turbulence model was used as the closing one. The technique was preliminarily tested on the check problem for the flow of the rectangular crosssection beams. Calculations were carried out using the licensed ANSYS software.Research Results. The calculated dependences on the attack angle of the aerodynamic coefficients of forces (drag and lift) and the moment of the cross sections of the girder bridges of standard shapes are obtained. These data refer to the span structures at the construction phase (without deck and parapets, without parapets) and operation phase, under the conditions of model smooth and turbulent incoming flow. The latter allows us to outline the boundaries for more weighted estimates of the aerodynamic characteristics of thegirder bridges in a real wind current. The best agreement with the experimental data was obtained from the drag of the cross-section. The magnitude of the lifting force is more sensitive to the presence and extent of the separation regions, so its numerical determination is less accurate. The reproduction of the angle-of-attack effect on the aerodynamic moment of the cross-section is the most challenging for the majority of configurations.Discussion and Conclusions. Comparison of the calculated and experimental data indicates the applicability of the URANS approach to the operational prediction of the aerodynamic characteristics of the single-beam span structures. In the case of multi-beam span structures, where the aerodynamic interference between separate girders plays an important role, the URANS approach must apparently give way to more accurate eddy-resolving methods. The results obtained can be used in the aerodynamic analysis of structures and in practice of the relevant design organizations in the field of transport construction.


2013 ◽  
Vol 12 (2) ◽  
pp. 063-070
Author(s):  
Janusz Szelka ◽  
Zbigniew Kamyk

The needs of expeditionary forces involve the use of light-weight, short-span bridges so that their transport by air would be possible. A project which is currently developed in USA aims at the elaboration of a Composite Army Bridge (CAB) assault bridge and a Modular Composite Bridge – MCB logistic bridge. In 2004 CAB successfully underwent fatigue tests. A 14 m-long, all-composite treadway bridge span was loaded by using an MLC 100 vehicle and it withstood 20 000 load cycles. The MCB will be constructed by7 m of box modules and a 6.5 m access ramp. A 26 m-long and 4 m-wide bridge span is to provide the traffic ability of MLC 65. Furthermore, works on a 10 m-long, MLC 30 composite bridge are also developed in Canada too. The paper also presents the American concept of employing a deployable bridge system by utilising a composite structure. In order to formwork and reinforce the plate, fibre reinforced polyester composites (FRP) were used. The girder construction is made of aluminium pipes forming diamond truss with curved bottom chord. After they are integrated in the structure, the top chord nodes are connected through deck plate cast in-situ. The tests indicated that there exists the possibility of using polymer composites in military bridge construction and mobile structures of composite bridges.


2020 ◽  
Vol 198 ◽  
pp. 02026
Author(s):  
Peizhi Wang

The seismic vulnerability of highway continuous girder bridges is analyzed to provide theoretical basis for the study of multi-stage fortification and seismic design of such bridges. Based on the concept of performance seismic design, five performance levels of structures are determined, and the displacement ductility ratio of piers is taken as the performance quantitative index to calculate the damage limit values of bridges in different limit states. On this basis, IDA analysis method is used to calculate 20 subjects. Based on the reliability theory, logarithmic regression fitting analysis is carried out to obtain the seismic vulnerability curve. The theoretical vulnerability curve is indicated that the bridge has good comprehensive seismic performance. Under 0.3 g ground motion, the probability of minor damage, moderate damage and serious damage are 57.9%, 44.7% and 3.6% respectively. The comprehensive seismic performance of bridges and the probability of exceeding the damage status at all levels are reflected in the results, the guiding significance to analysis of the seismic performance of the entire traffic and the formulation of emergency rescue plans.


Author(s):  
R. Cucuzza ◽  
C. Costi ◽  
M.M. Rosso ◽  
M. Domaneschi ◽  
G.C. Marano ◽  
...  

This work focuses on the proposal and the evaluation of a new consolidation system for prestressed reinforced concrete (PRC) beams of girder bridges. The system consists of two arch-shaped steel trusses placed alongside the lateral faces of the beam to beconsolidated. The arches develop longitudinally along the entire span of the beam and in elevation using the available height of the PRC cross section. The consolidation system is characterized by its own external constraints, independent from those serving the pre-existing element. The efficiency of the system with respect to parameters variability is described also focusing on the ratio between the load discharged by the consolidation system and the total applied load. Referring to a case study, the consolidation of a PRC beam is presented adopting the proposed system with respect to the usually adopted external prestressing technique. The cross sections properties of the steel arch shaped trusses are defined by means of a structural optimization process using a genetic algorithm, identifying the minimum steel consumption. Finally, a preliminary cost-benefit analysis is performed for the proposed solution for a comparison with other commonly adopted techniques.


1977 ◽  
Vol 1977 (259) ◽  
pp. 11-23
Author(s):  
Hisanori OTSUKA ◽  
Torazo YOSHIMURA ◽  
Hiroshi HIKOSAKA ◽  
Katsuyoshi HIRATA

Sign in / Sign up

Export Citation Format

Share Document