scholarly journals The regional decline and rise of tick-borne encephalitis incidence do not correlate with Lyme borreliosis, Austria, 2005 to 2018

2021 ◽  
Vol 26 (35) ◽  
Author(s):  
Karin Stiasny ◽  
Isabel Santonja ◽  
Heidemarie Holzmann ◽  
Astrid Essl ◽  
Gerold Stanek ◽  
...  

Background Tick-borne encephalitis (TBE) virus is a human pathogen that is expanding its endemic zones in Europe, emerging in previously unaffected regions. In Austria, increasing incidence in alpine regions in the west has been countered by a decline in traditional endemic areas to the east of the country. Aim To shed light on the cause of this disparity, we compared the temporal changes of human TBE incidences in all federal provinces of Austria with those of Lyme borreliosis (LB), which has the same tick vector and rodent reservoir. Methods This comparative analysis was based on the surveillance of hospitalised TBE cases by the National Reference Center for TBE and on the analysis of hospitalised LB cases from hospital discharge records across all of Austria from 2005 to 2018. Results The incidences of the two diseases and their annual fluctuations were not geographically concordant. Neither the decline in TBE in the eastern lowlands nor the increase in western alpine regions is paralleled by similar changes in the incidence of LB. Conclusion The discrepancy between changes in incidence of TBE and LB support the contributions of virus-specific factors beyond the mere availability of tick vectors and/or human outdoor activity, which are a prerequisite for the transmission of both diseases. A better understanding of parameters controlling human pathogenicity and the maintenance of TBE virus in its natural vector−host cycle will generate further insights into the focal nature of TBE and can potentially improve forecasts of TBE risk on smaller regional scales.

2001 ◽  
Vol 356 (1411) ◽  
pp. 1045-1056 ◽  
Author(s):  
Sarah E. Randolph

The two major vector-borne diseases of northern temperate regions, tick-borne encephalitis (TBE) and Lyme borreliosis (LB), show very different epidemiological patterns, but both have increased significantly in incidence since the 1980s. Insight into the temporal dynamics of TBE, gained from statistical analysis of spatial patterns integrated with biological explanation, suggests that the recent increases in TBE cases in Central Europe and the Baltic States may have arisen largely from changes in human behaviour that have brought more people into contact with infected ticks. Under forecast climate change scenarios, it is predicted that enzootic cycles of TBE virus may not survive along the southern edge of their present range, e.g. in Slovenia, Croatia and Hungary, where case numbers are indeed decreasing. New foci, however, are predicted and have been observed in Scandinavia. At the same time, human impact on the landscape, increasing both the habitat and wildlife hosts of ticks, has allowed tick populations to multiply significantly. This probably accounts for a genuine emergence of LB, with its high potential transmission rate, in both the USA and Europe, although the rate of emergence has been exaggerated by improved surveillance and diagnosis.


2018 ◽  
Vol 39 (4) ◽  
pp. 200
Author(s):  
Peter Irwin ◽  
Siobhon Egan ◽  
Telleasha Greay ◽  
Charlotte Oskam

It may seem perplexing that there is any uncertainty in Australia about the existence of zoonotic tick-associated infections1–3. Outside this country, particularly in the northern hemisphere, tick-borne diseases such as human granulocytic anaplasmosis, babesiosis, Boutonneuse fever, ehrlichiosis, Lyme borreliosis, and tick-borne encephalitis, have well documented aetiologies, epidemiology, diagnostic methods, and treatments. Why is Australia different and what research is being conducted to address this issue? This article briefly addresses these questions and explains how high-throughput metagenomic analysis has started to shed light on bacterial microbiomes in Australian ticks, providing new data on the presence and distribution of potentially zoonotic microbial taxa.


2017 ◽  
Vol 16 (2) ◽  
pp. 70-73 ◽  
Author(s):  
A. R. Efimova ◽  
O. M. Drozdova

Epidemiologic patterns of spread of TBE and Lyme Borreliosis in the Kemerovo region within 23 years (1993 - 2015) have been studied. It has been established that sickness rate of TBE has reduced while sickness rate of Lyme Borreliosis has increased. Risk groups and risk areas of distribution of tick-borne infections have been detected. Borrelia DNA has been detected in 35,46 ± 6,26% of ticks, TBE virus antigen has been detected in 2,2 ± 0,28% of ticks. Sickness rate of tick-borne infections and rate of detection of infected ticks differentiate in different areas of the region which therefore should involve differential approach to organization preventive measures.


Even though tick-borne encephalitis (TBE) has been a notifiable disease in Croatia since 2007, there are no or only limited data available on the occurring tick species in the endemic areas, on the prevalence of TBE virus (TBEV) in ticks, its distribution in Croatia, and its genetic characteristics. Reporting of human cases also is very scarce. The Central European subtype of virus (TBEV-EU) appears to be present in Croatia


Author(s):  
Wilhelm Erber ◽  
Tamara Vuković Janković

Although there are no reliable data on the number of tick-borne encephalitis (TBE) cases or the percentage of infected ticks, based on the geography and the presence of TBE virus (TBEV) in all neighboring countries, it must be assumed that TBEV is present anywhere in Moldova.


2021 ◽  
Vol 9 (6) ◽  
pp. 1172
Author(s):  
Ksenia Tuchynskaya ◽  
Viktor Volok ◽  
Victoria Illarionova ◽  
Egor Okhezin ◽  
Alexandra Polienko ◽  
...  

Currently the only effective measure against tick-borne encephalitis (TBE) is vaccination. Despite the high efficacy of approved vaccines against TBE, rare cases of vaccine failures are well documented. Both host- and virus-related factors can account for such failures. In this work, we studied the influence of mouse strain and sex and the effects of cyclophosphamide-induced immunosuppression on the efficacy of an inactivated TBE vaccine. We also investigated how an increased proportion of non-infectious particles in the challenge TBE virus would affect the protectivity of the vaccine. The vaccine efficacy was assessed by mortality, morbidity, levels of viral RNA in the brain of surviving mice, and neutralizing antibody (NAb) titers against the vaccine strain and the challenge virus. Two-dose vaccination protected most animals against TBE symptoms and death, and protectivity depended on strain and sex of mice. Immunosuppression decreased the vaccine efficacy in a dose-dependent manner and changed the vaccine-induced NAb spectrum. The vaccination protected mice against TBE virus neuroinvasion and persistence. However, viral RNA was detected in the brain of some asymptomatic animals at 21 and 42 dpi. Challenge with TBE virus enriched with non-infectious particles led to lower NAb titers in vaccinated mice after the challenge but did not affect the protective efficacy.


2015 ◽  
Vol 14 (6) ◽  
pp. 65-73 ◽  
Author(s):  
V. V. Pogodina ◽  
M. S. Shcherbinina ◽  
L. S. Levina ◽  
S. G. Gerasimov ◽  
N. M. Kolyasnikova

Siberian subtype of TBE virus dominates in the most part of Russia outside of the Far East. Peculiarity of immunity induced by Siberian subtype during disease or inapparent infection and change of immunity after vaccination are described in this article. Protective titre of antibodies and persistence of TBE virus (TBEV) in vaccinated organism are discussed.


2020 ◽  
Author(s):  
Franz Rubel ◽  
Katharina Brugger

In spring 2019, forecasts of the incidence of tick-borne encephalitis (TBE) for the next two years, i.e. 2019 and 2020, were made for the first time. For this purpose, negative binomial regression models with 4-5 predictors were fitted to the time series of annual human TBE incidences from Austria, Germany and Switzerland. The most important predictor for TBE incidences is the fructification index of the European beech (Fagus sylvatica) 2 years prior as a proxi for the intensity of the TBE virus transmission cycle. These forecasts were repeated in spring 2020 after the updated predictors and the confirmed TBE cases for 2019 became available. Forecasting TBE incidences for 2020 and 2021 results in 156±19 and 131±23 TBE cases for Austria, 663±95 and 543±112 TBE cases for Germany as well as 472±56 and 350±62 TBE cases for Switzerland. The newly implemented operational TBE forecasts will be verified every year with confirmed TBE cases. An initial verification for 2019 demonstrates the high reliability of the forecasts.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Camille Victoire Migné ◽  
Vaclav Hönig ◽  
Sarah Irène Bonnet ◽  
Martin Palus ◽  
Sabine Rakotobe ◽  
...  

AbstractUp to 170 tick-borne viruses (TBVs) have been identified to date. However, there is a paucity of information regarding TBVs and their interaction with respective vectors, limiting the development of new effective and urgently needed control methods. To overcome this gap of knowledge, it is essential to reproduce transmission cycles under controlled laboratory conditions. In this study we assessed an artificial feeding system (AFS) and an immersion technique (IT) to infect Ixodes ricinus ticks with tick-borne encephalitis (TBE) and Kemerovo (KEM) virus, both known to be transmitted predominantly by ixodid ticks. Both methods permitted TBEV acquisition by ticks and we further confirmed virus trans-stadial transmission and onward transmission to a vertebrate host. However, only artificial feeding system allowed to demonstrate both acquisition by ticks and trans-stadial transmission for KEMV. Yet we did not observe transmission of KEMV to mice (IFNAR−/− or BALB/c). Artificial infection methods of ticks are important tools to study tick-virus interactions. When optimally used under laboratory settings, they provide important insights into tick-borne virus transmission cycles.


2019 ◽  
Vol 29 (4) ◽  
pp. 631-633
Author(s):  
Lukas Frans Ocias ◽  
Mattias Waldeck ◽  
Ingemar Hallén ◽  
Mathilde Nørgaard ◽  
Karen Angeliki Krogfelt

Abstract Tick-borne encephalitis (TBE) is a tick-borne infection with an increasing presence in many European countries. It is caused by the TBE virus (TBEV), a flavivirus transmitted by the Ixodes ricinus tick in northern Europe. In Denmark, the virus exists endemically on the island of Bornholm. However, a large proportion of Danish cases are also imported from Sweden, where the incidence of TBE has steadily been increasing during the last few decades. With the prospect of expanding risk areas due to climate change, TBE surveillance data exchange between countries could facilitate the identification of new TBEV microfoci and thereby aid healthcare workers in the issuing of vaccination recommendations. We present data from a collaborative effort between Denmark and Sweden on the surveillance of TBEV that resulted in the uncovering of a previously unrecognized possible TBEV microfocus in central Sweden.


Sign in / Sign up

Export Citation Format

Share Document