scholarly journals The Effect of Using Sustainable Materials on the Performance-Related Properties of Asphalt Concrete Mixture

2019 ◽  
Vol 5 (12) ◽  
pp. 2727-2737
Author(s):  
Amjad H. Albayati ◽  
Waleed Arrak Turkey

Sustainability is very important in this world at this time. One of the best materials used for sustainability in asphalt concrete pavements is the warm mix asphalt (WMA) as well as the reclaimed asphalt pavement (RAP). WMA technology has the ability to reduce production temperature to reduce the fuel usage and emissions. RAP is the old concrete asphalt mixture that is out of service and using it again leads to preservation of the virgin material. This search studied the viability of using WMA with different percentages of RAP (10%, 30%, and 50%) and compared them with control hot mix asphalt (HMA) and WMA. The Marshall properties, Tensile strength ratio (TSR), rut depth and fatigue life were determined in this work. The results showed that the tensile strength ratio (TSR) for HMA was better than that for WMA by 6%, rut depth for HMA was (4.37 mm) lower than that for WMA was (6.5mm), better fatigue life was obtained for WMA was (700 cycle) as compared to HMA was (500 cycle). In case of WMA with RAP (WMA-RAP), when the percentage of RAP increased with WMA, the moisture damage resistance improved by 2.5%, 13.3% and 15.4% for G1, G3 and G5 respectively, also the rutting resistance improved by 34.6%, 48% and 62.3% for G1, G3 and G5 respectively, but deteriorated of fatigue life by 45.8%, 74% and 88.5% for G1, G3 and G5 respectively.

Author(s):  
Md Mehedi Hasan ◽  
Hasan M. Faisal ◽  
Biswajit K. Bairgi ◽  
A. S. M. Rahman ◽  
Rafiqul Tarefder

Asphalt concrete’s dynamic modulus (|E*|) is one of the key input parameters for structural design of flexible pavement according to the Mechanistic Empirical Pavement Design Guide (MEPDG). Till this day, pavement industry uses |E*| to predict pavement performance whether the material is hot mix asphalt (HMA) or warm mx asphalt or Reclaimed Asphalt Pavement (RAP) mixed HMA. However, it is necessary to investigate the correlation of |E*| with laboratory performance testing. In this study, laboratory dynamic modulus test was conducted on four different asphalt concrete mixtures collected from different construction sites in the state of New Mexico and mastercurves were obtained to evaluate dynamic modulus (|E*|) for a wide range of frequency. In addition, fatigue performance of these mixtures was predicted from the mastercurves and compared with the laboratory fatigue performance testing. Fatigue performance of these mixtures was evaluated from the four point beam fatigue test. The laboratory results show a good agreement with the predicted value from mastercurves. It is also observed from this study that the fatigue life of the asphalt concrete materials decreases with increase in |E*| value.


Vehicles ◽  
2020 ◽  
Vol 2 (1) ◽  
pp. 55-74 ◽  
Author(s):  
Maria Pomoni ◽  
Christina Plati ◽  
Andreas Loizos

Vehicles’ braking is a key factor towards safer driving. In particular, tyre–pavement friction is connected with both industry and infrastructure requirements in terms of tyre characteristics and frictional properties of pavement surfaces respectively that both contribute to safe braking. For this reason, tyre–pavement friction is considered as one of the most pressing emergencies in roadway assets in order to reduce skidding related accidents. At the same time, sustainability aspects have been raised in modern infrastructure engineering. Hence, an issue is introduced on how sustainable materials used for pavement construction may contribute to tyre–pavement and consequently vehicles’ braking. For this reason, a laboratory process is developed to investigate the frictional properties of several utilized in pavement wearing courses including both traditional and sustainable materials (reacted activated rubber—RAR and reclaimed asphalt pavement—RAP). Environmental conditions (seasonal temperature changes, rainfall effect and contamination caused by dust formation) are simulated in the laboratory and vehicles’ braking is investigated using the British Pendulum Tester (BPT). Results provide a good explanation for the vehicles’ braking ability under the investigated conditions for both traditional and sustainable materials. Ultimately, it is proved that asphalt mixture types with RAR modifier or RAP material exhibit a satisfactory performance towards providing a safe road surface for the moving vehicles.


2010 ◽  
Vol 168-170 ◽  
pp. 2654-2657
Author(s):  
Xiao Jun Li ◽  
Li Hua Jiang ◽  
Yun Xian Wang

In this paper, a new Indirect tensile tester (IDT) which can be cooperated with Industrial Computered Tomography (IDT) is developed. The new tester uses a set of sliders to transfer the vertical stress to hoop stress which applied to a hollow cylindrical sample. The micro-crack will be appeared and propagated in the weakest direction of hollow cylindrical sample with the increase of vertical stress and tensile strength can calculated with the maximum vertical stress. Due to the existence of central slider, the stress state of hollow cylindrical sample will be kept even after unloading and the mixture sample would not have recovery when it is moved for scanning with ICT. The test results show that the combination of the developed ICT with IDT will help obtain more useful information on understanding the nature of asphalt concrete with different tensile damage stages.


2014 ◽  
Vol 599 ◽  
pp. 110-114 ◽  
Author(s):  
Yan Hua Wang ◽  
Kuang Yi Liu ◽  
Hai Xia Zhang ◽  
Shan Li

Anti-rut agent, named RPS-3000,was added into AC-25 asphalt mixture and its effects on high temperature stability, low temperature cracking resistance, water damage resistance and fatigue life were investigated in this paper. Results showed that the high temperature stability and low temperature crack resistance of the asphalt mixture improved significantly, the water damage stability increase slightly due to the introduction of anti-rut agents. Besides, the result of fatigue life test presented that excess amount of anti-rut agent may lead a deterioration of fatigue life. Keywords: Anti-rut agent; High temperature stability; Asphalt mixture


2011 ◽  
Vol 255-260 ◽  
pp. 3432-3436
Author(s):  
Xian Yuan Tang ◽  
Jie Xiao

This paper systematically elaborates the impact upon performance of emulsion asphalt cold reclaimed asphalt mixture by different RAP contents, through a series of testing on six cold reclaimed asphalt mixtures with various RAP contents, such as single axle compression test, 15°C indirect tensile strength (ITS) test, 40°C rutting test and -10°C low-temperature bending beam test. Testing results indicate that 15°C ITS decreases from around 0.75 MPa to 0.58 MPa with the RAP content of mixture increasing from 0% to 100%. 40°C dynamic stabilities reduce considerably from around 19,000 time/mm of 0% RAP mixture to 3,600 time/mm of 100% RAP mixture. -10°C failure strains only change from 1500με to 2000με.


2016 ◽  
Vol 700 ◽  
pp. 227-237 ◽  
Author(s):  
Siti Nur Amiera Jeffry ◽  
Ramadhansyah Putra Jaya ◽  
Norhafizah Manap ◽  
Nurfatin Aqeela Miron ◽  
Norhidayah Abdul Hassan

Significant quantities of coconut shell (CS), a by-product of agriculture, can be used as an artificial source of coarse aggregates. In this study, four CSs were used as coarse aggregates replacement in asphalt concrete with 0%, 10%, 20%, 30%, and 40% weight volumes. The particle sizes of the CSs used as main coarse aggregates range from 5 mm to 20 mm. The Marshall Stability test shows that the optimum bitumen content for asphalt mixtures is 5.1%. The engineering properties investigated include the volumetric, dynamic creep, indirect tensile strength, and resilient modulus. Test results show that stability decreases with increasing CS content because of high water absorption. Considering that CSs absorb bitumen, a further detailed investigation is needed to assess the performance of modified bitumen on mixture. Furthermore, the use of CSs as coarse aggregates in asphalt concrete help increase the resilient modulus, stiffness, and indirect tensile strength up to 30%. Generally, a 10% replacement of coarse aggregates with CSs is the optimal limit.


Author(s):  
Ilham I. Mohammed

Sinceasphalt concrete undergo different failure problems at different temperature and moisture conditions and for years many scientists and researchers used different kinds of materials and variety of methods for improving the properties of asphalt concrete made with either basalt or limestone.So it became necessary to provide the best possible way to get rid of these failure problems.In this study diluted zycotherm nanomaterial at three different percentages by weight of aggregate used with two aggregate types, basalt and limestone, and asphalt concrete made with the marinated aggregate and later the properties of asphalt concrete were investigated after the marination.Indirect tensile strength test and retained stability test results were used to evaluate the marinating effect.As a result zycotherm dilution by weight of aggregate has changed the properties of asphalt mixture and improved to a great extent. From the results it can be concluded that rutting and fatigue problems decreased with a great range.


Sign in / Sign up

Export Citation Format

Share Document