The Dynamic Response of Wood-Frame Shear Walls with Viscoelastic Dampers

1999 ◽  
Vol 15 (1) ◽  
pp. 67-86 ◽  
Author(s):  
David W. Dinehart ◽  
Harry W. Shenton ◽  
Timothy E. Elliott

Results are presented of an experimental investigation, the objectives of which were to evaluate and compare the performance of conventional plywood shear walls with walls that include viscoelastic (VE) dampers. Cyclic tests were conducted on conventional walls and walls with VE dampers; five different damper configurations were tested. The walls with the VE dampers showed an increase in the total energy dissipation and an increase in the effective stiffness, relative to the conventional wall, with increases in energy dissipation as high as 59 percent. Tests demonstrated that the sheathing-to-stud and corner dampers can easily be installed within the confines of the wall and can be utilized without impacting the design, construction, or finishing of the shear wall. The results demonstrate that addition of the viscoelastic dampers significantly enhanced the dynamic performance of the walls by increasing the energy dissipation capacity and providing a constant source of energy dissipation.

2014 ◽  
Vol 919-921 ◽  
pp. 1812-1816 ◽  
Author(s):  
Quan Dong Xiao ◽  
Zheng Xing Guo

To study the seismic behavior of Double-Wall Precast Concrete (DWPC) shear wall, three full scale specimens are tested and compared under low-cyclic reversed loading, including two DWPC shear walls and one normal Cast-In-Situ (CIS) shear wall. By observing their experimental phenomena and failure modes, contrasting their displacement ductility coefficients, hysteretic curves, skeleton curves and energy dissipation capacity, the seismic behavior were synthetically evaluated on aspects of strength, stiffness, ductility and energy dissipation. Compared with CIS specimen, DWPC specimens have higher initial stiffness, increased cracking loads by 43% to 47%, and the ultimate loads increased by 22% to 23%. The displacement ductility ratios also meet the ductility requirements with value of 5. The hysteretic curves of three specimens are plump, and the trend of skeleton curves is basically the same. The DWPC specimens demonstrated a good energy dissipation capacity. All the specimens had shown favorable seismic performance.


1998 ◽  
Vol 25 (3) ◽  
pp. 412-423 ◽  
Author(s):  
Harry W Shenton III ◽  
David W Dinehart ◽  
Timothy E Elliott

Tests have been conducted on wood frame shear walls to characterize the degradation of stiffness and energy dissipation that occurs under cyclic loading. A total of eight walls were tested, four sheathed in plywood and four sheathed in oriented-strand board. The tests were conducted in accordance with a draft test procedure recently proposed by the Structural Engineers Association of Southern California, which is based on a sequential phased displacement command input. The results indicate that effective stiffness decreases linearly with continued cycling at the same displacement and decreases with increasing amplitudes of displacement. Furthermore, the energy dissipation capacity of the wall decreases by 15-20% with the first cycle at a given amplitude, then decreases slightly with continued cycling at the same amplitude. The changes in effective stiffness and energy dissipation are generally independent of the type of sheathing for loads less than the wall ultimate, suggesting that the wall performance under cyclic loading is influenced more by the fastener and frame behavior. The results presented should be useful for design and for verifying hysteretic models of the shear wall behavior.Key words: cyclic, dynamic, energy dissipation, experimental, seismic, shear wall, stiffness, testing, timber, wood frame.


2021 ◽  
Vol 7 (4) ◽  
pp. 633-648
Author(s):  
Ali Joharchi ◽  
Siti Aminah Osman ◽  
Mohd Yazmil Md Yatim ◽  
Mohammad Ansari

Corrugated Steel Shear Wall (CSSW) is an efficient shear wall system, which has higher energy dissipation capacity, ductility and stiffness when compared to the Steel Plate Shear Wall (SPSW) with flat infill plate. Despite of these advantages, the ultimate load of CSSW is lower than that of SPSW. Various studies conducted to improve the cyclic behavior of CSSW revealed that increasing corrugation angle might enhance energy dissipation capacity and toughness of CSSWs. However, the ultimate load of CSSW was not improved by increasing the corrugation angle. Thus, the current study proposed new corrugated infill panel schemes to improve the ultimate load of CSSWs. To this end, Finite Element (FE) models were established using ABAQUS/Standard and verified with the experimental results from previous researches. The corrugation angle of the proposed plates was found based on a numerical investigation on seven CSSW FE models with the corrugation angle ranges from 30° to 120°. The FE results revealed that the model with the corrugation angle of 120 achieved highest ultimate load, energy dissipation capacity and toughness amongst the CSSW models. In addition, the ultimate loads, energy dissipation capacities and toughness of the proposed infill plates were up to 11.8%, 53.9% and 8.8% respectively higher than those of CSSW model with the corrugation angle of 120°. Furthermore, the proposed infill plates use up to 13.4% lower amount of steel compared to the corrugated plate with the corrugation angle of 120. Doi: 10.28991/cej-2021-03091678 Full Text: PDF


2021 ◽  
Vol 30 (4) ◽  
Author(s):  
Bi Ying

In the recent five decades, steel shear walls have been one of the most important systems in the construction and rehabilitation of many structures. The system has many advantages including high strength and stiffness, high ductility and excellent energy dissipation capacity. Steel shear walls are made and executed in different types. These include walls with and without stiffeners as well as composites. Recent research shows that they are a type of steel shear wall in which the infill plate is slightly away from the boundary members. In fact, there is no connection between the infill plate and one of boundary members. Therefore, in this study, the behavior of traditional one-story-one-span steel shear walls with 4 different lengths was investigated. For comparison, walls in which the sheet was attached only to a beam or column were examined. Obtained results from the study showed that the lateral bearing capacity of samples with free beam or free column is less than that of samples with full connection, on average 20%. Also, the strength of the samples with free column is slightly higher than the samples with free beam. In addition, boundary members, especially columns, are much less affected by forces in free-column specimens than in other specimens, and this could decreases economical costs.


2021 ◽  
Vol 11 (7) ◽  
pp. 3275
Author(s):  
Majid Yaseri Gilvaee ◽  
Massood Mofid

This paper investigates the influence of an opening in the infill steel plate on the behavior of steel trapezoidal corrugated infill panels. Two specimens of steel trapezoidal corrugated shear walls were constructed and tested under cyclic loading. One specimen had a single rectangular opening, while the other one had two rectangular openings. In addition, the percentage of opening in both specimens was 18%. The initial stiffness, ultimate strength, ductility ratio and energy dissipation capacity of the two tested specimens are compared to a specimen without opening. The experimental results indicate that the existence of an opening has the greatest effect on the initial stiffness of the corrugated steel infill panels. In addition, the experimental results reveal that the structural performance of the specimen with two openings is improved in some areas compared to the specimen with one opening. To that end, the energy dissipation capacity of the specimen with two openings is obtained larger than the specimen with one opening. Furthermore, a number of numerical analyses were performed. The numerical results show that with increasing the thickness of the infill plate or using stiffeners around the opening, the ultimate strength of a corrugated steel infill panel with an opening can be equal to or even more than the ultimate strength of that panel without an opening.


Author(s):  
Yiming Ma ◽  
Liusheng He ◽  
Ming Li

Steel slit shear walls (SSSWs), made by cutting slits in steel plates, are increasingly adopted in seismic design of buildings for energy dissipation. This paper estimates the seismic energy dissipation capacity of SSSWs considering out-of-plane buckling. In the experimental study, three SSSW specimens were designed with different width-thickness ratios and aspect ratios and tested under quasi-static cyclic loading. Test results showed that the width-thickness ratio of the links dominated the occurrence of out-of-plane buckling, which produced pinching in the hysteresis and thus reduced the energy dissipation capacity. Out-of-plane buckling occurred earlier for the links with a larger width-thickness ratio, and vice versa. Refined finite element model was built for the SSSW specimens, and validated by the test results. The concept of average pinching parameter was proposed to quantify the degree of pinching in the hysteresis. Through the parametric analysis, an equation was derived to estimate the average pinching parameter of the SSSWs with different design parameters. A new method for estimating the energy dissipation of the SSSWs considering out-of-plane buckling was proposed, by which the predicted energy dissipation agreed well with the test results.


Author(s):  
Guoqiang LI ◽  
Mengde PANG ◽  
Feifei Sun ◽  
Liulian LI ◽  
Jianyun SUN

Coupled shear walls are widely used in high rise buildings, since they can not only provide efficient lateral stiffness but also behave outstanding energy dissipation ability especially for earthquake-resistance. Traditionally, the coupling beams are made of reinforced concrete, which are prone to shear failure due to low aspect ratio and greatly reduce the efficiency and ability of energy dissipation.  For overcoming the shortcoming of concrete reinforced coupling beams (RCB), an innovative steel coupling beams called two-level-yielding steel coupling beam (TYSCB) is invented to balance the demand of stiffness and energy dissipation for coupled shear walls. TYSCBs are made of two parallel steel beams with yielding at two different levels.  To verify and investigate the aseismic behaviour improvement of TYSCB-coupled shear walls, two 1/3 scale, 10-storey coupled shear wall specimens with TYSCB and RCB were tested under both gravity and lateral displacement reversals. These two specimens were designed with the same bearing capacity, thus to be easier to compare. The experimental TYSCB specimen demonstrated more robust cyclic performance. Both specimens reached 1% lateral drift, however, the TYSCB-coupled shear wall showed minimal strength degradation. Additionally, a larger amount of energy was dissipated during each test of the TYSCB specimen, compared with the RCB specimen. Based on the experimental results, design recommendations are provided.


1999 ◽  
Vol 15 (4) ◽  
pp. 841-844
Author(s):  
David W. Dinehart ◽  
Harry W. Shenton ◽  
Timothy E. Elliott

2021 ◽  
pp. 136943322110542
Author(s):  
Mahdi Usefvand ◽  
Ahmad Maleki ◽  
Babak Alinejad

Coupled steel plate shear wall (C-SPSW) is one of the resisting systems with high ductility and energy absorption capacity. Energy dissipation in the C-SPSW system is accomplished by the bending and shear behavior of the link beams and SPSW. Energy dissipation and floor displacement control occur through link beams at low seismic levels, easily replaced after an earthquake. In this study, an innovative coupled steel plate shear wall with a yielding FUSE is presented. The system uses a high-ductility FUSE pin element instead of a link beam, which has good replaceability after the earthquake. In this study, four models of coupled steel plate shear walls were investigated with I-shaped link beam, I-shaped link beam with reduced beam section (RBS), box-link beam with RBS, and FUSE pin element under cyclic loading. The finite element method was used through ABAQUS software to develop the C-SPSW models. Two test specimens of coupled steel plate shear walls were validated to verify the finite element method results. Comparative results of the hysteresis curves obtained from the finite element analysis with the experimental curves indicated that the finite element model offered a good prediction of the hysteresis behavior of C-SPSW. It is demonstrated in this study that the FUSE pin can improve and increase the strength and energy dissipation of a C-SPSW system by 19% and 20%, respectively.


2012 ◽  
Vol 517 ◽  
pp. 164-170 ◽  
Author(s):  
Juan Francisco Correal ◽  
Sebastian Varela

Wood frame buildings have shown good performance on past earthquakes mainly because the lateral system of those buildings was able to dissipate energy without significant loss of lateral capacity. Typically, the lateral load resisting system is provided by wood shear walls, which consist of a wood frame sheathed with wood or wood-based composites, such as Plywood or OSB panels. Taking into account the increasing forest demand for wood, there is a global need to find alternative energy-efficient, renewable and eco-friendly construction materials. Giant bamboo like Guadua Angustifolia kunt emerges as an interesting construction material, since it has a fast growing rate (3 to 4 years), high strength to weight ratio and high carbon (CO2) capture capabilities. Results of a past study conducted at the Universidad de los Andes in Bogotá-Colombia reported that Glued Laminated Guadua Bamboo (GLG) has mechanical properties comparable to those of the best structural timbers in Colombia. Potential applications of GLG include not only laminated beams and columns, but also structural panels to be used as a sheathing material for wood frame shear walls. A comprehensive experimental study has been performed on GLG sheathed shear walls in order to find an alternative sheathing material for wood frame buildings as well as to explore their possible application for residential and/or commercial construction in Colombia. A series of tests were conducted on full-size shear wall specimens in order to study the influence of the wall aspect ratio and the edge nail spacing on the shear wall performance. Based on cyclic tests on shear walls, it was found that the stiffness and maximum load carrying capacity of the wall increases as edge nail spacing decreases. In contrast, the displacement ductility capacity decreases, since the rotation of the panels is restricted when the edge nail spacing is reduced. Experimental results also revealed that stiffness, maximum load capacity, and ductility of the GLG sheathed shear walls are not affected by the aspect ratio of the wall. The final stage of the present study included dynamic shake-table tests on full-size one and two-story housing units using GLG sheathed shear walls. Results showed that the units had similar performance characteristics to those of OSB and Plywood sheathed shear walls, and it was concluded that wood-GLG combination could be a viable construction alternative from a structural point of view.


Sign in / Sign up

Export Citation Format

Share Document