scholarly journals Influence of Highway Traffic on Contamination of Roadside Soil with Heavy Metals

2021 ◽  
Vol 7 (8) ◽  
pp. 1459-1471
Author(s):  
Benabid Abderrahmane ◽  
Benmbarek Naima ◽  
Mansouri Tarek ◽  
Merdas Abdelghani

This study is one of the first works which examined the assessment of heavy metal contamination of pavement-side soils in Algeria. It deals with the section of National Highway 3 (RN3), which crosses the wilaya of Batna. In the environment of sampling sites there is no industry or dangerous activity on the environment, the heavy metals addressed in this study are (Pb, Cu, Cr, Fe, Ni, Zn), their origin being road traffic. The objectives of this study were to: (1) Determine the concentrations of heavy metals in road dust; (2) Identify the sources of different heavy metals in soils and road dust; (3) Exploring the extent of heavy metal pollution in neighbouring soils. To this end, 33 samples were collected, including 03 road dust and 30 soil samples over different distances from 1m to 80m. The samples were analyzed by FRX. Results indicated that concentrations in road dust were higher than in soil. The distribution of heavy metal concentrations in dust is Fe>Pb>Zn>Cu>Cr>Ni, and the distribution in the ground is Fe>Pb>Cu>Zn>Cr>Ni in the direction of Biskra and in the opposite direction and decreases away from the road, while the distribution in the central solid ground is Fe> Cu>Cr>Pb>Zn>Ni. Climatic conditions such as wind, rainfall, temperature, humidity and the nature of the terrain were also significantly related to their enrichment in these roadside soils. The enrichment factor (EF) and the geo-accumulation index (Igeo) were calculated, as well as all elements with a (EF) that ranges from moderate to high to extremely contaminated, reflecting the high anthropogenic load of these metals in the study area and the results of the Igéo accumulation indices confirm the results obtained for the enrichment factor (EF). Doi: 10.28991/cej-2021-03091736 Full Text: PDF

2016 ◽  
Vol 18 (4) ◽  
pp. 742-760 ◽  

<div> <p>This paper present migration of some selected heavy metal (zinc, lead, copper, chromium and nickel) of roadside soil samples from along Ilesa-Akure highway with a view to assess the degree of contamination such soils contain and the likelihood that this contamination can be remobilized. Soil samples were collected from 5 locations (Ilesa, Ipetu-ijesa, JABU, Ilara-mokin and FUTA north gate) at depths of 0-5, 15-20, 35-40 and 55-60cm and analysed for the five selected heavy metals in the bulk sample and clay fraction. Their concentrations and distributions in four different road verge zones (5m, 30m, 60m and 110m) were determined. The 5m zone had the highest mean concentration of the five metals whereas the 110m zone exhibited the lowest mean concentration. Zinc and lead exhibited a significant decrease in the roadside soils with the increasing distance from the road while chromium and nickel showed significant increase, copper on the other hand showed no significant difference. Quantitative assessment of the heavy metal contamination using the I<sub>geo </sub>and <em>PI</em> indexes showed that the selected heavy metals were in the order of Cu &lt; Pb &lt; Zn &lt; Ni &lt;Cr for both Indexes. Soil characteristics (which include pH, Cation exchange capacity {CEC}, organic matter and other basic geotechnical tests) responsible for the mobility and vertical distributions of these heavy metals from the road side soil were also assessed.</p> </div> <p>&nbsp;</p>


Author(s):  
Samitha K. A. ◽  

Agriculture plays an important role in the sustainable development of the country. Use of chemical fertilizers escalate certain components in excess quantity thereby deteriorate the productivity and leads to unpredicted outcome. This study makes an effort to reckon the accumulation of some selected heavy metals [Lead (Pb), Nickel (Ni) and Cadmium(Cd)] and related indices [bio concentration factor(BCF) and translocation factor (TF)] from roots, leaves and fruits of pineapple plantations in Ernakulam district. Contamination factor(CF), enrichment factor(EF) and geo accumulation index (Igeo) disclose the extent of soil contamination in the pineapple cultivated regions of Ernakulam district. Root to shoot TF derived for Pb, Ni, and Cd were 0.25, 0.733 and 0.6731. TF of Pb, Ni and Cd from root to fruit was 0, 0.5 and 0.195 respectively. Values obtained for BCF of Pb, Ni and Cd in root of the pineapple plant were 0.2013,0.5758 and 0.3288. In pineapple leaves BCF showed the values 0.0503, 0.4222 and 0.2214 by Pb, Ni and Cd. Pineapple fruit showed BCF values Zero, 0.2879 and 0.0641 for Pb, Ni and Cd. Enrichment factor for Pb, Ni and Cd in pineapple cultivated areas comes under the value 4.2, 3.7 and 2.8 respectively. Furthermore, the contamination factor of Pb, Ni and Cd was 9.93, 8.26 and 6.23, respectively. The values of geo accumulation index obtained for different heavy metals pass on that the degree of pollution with respect to Pb (6.621) was very strong and extremely contaminated, heavily to extremely contaminated for Ni (5.513) and Cd (4.15).


2014 ◽  
Vol 522-524 ◽  
pp. 71-74
Author(s):  
Shao Peng Wang ◽  
Ying Hui Wang ◽  
Rui Jie Zhang ◽  
Dao Quan Xu

To fully understand the levels of heavy metal contamination and potential ecological risk,content level and distribution characteristics of nine kinds of heavy metal (Ti, Cd, Pb, Zn, Cr, Cu, Hg, As, Al) were analyzed in surface sediments collected in Hejiang River which flows through Hezhou City, a typical developing city in China. Researching enrichment regularity and the possible source of heavy metals by correlation analysis, as well geo-accumulation index (Igeo) was calculated to assess the anthropogenic contamination in the region. Results showed that the levels of sediment heavy metals followed the order: Al > Zn > As > Cu > Pb > Cr > Cd > Tl > Hg; obvious positive correlations were observed amongst the concentrations of Pb, Zn, As, Cd, Cu, Al; the pollution extent of heavy metals in sediments by geo-accumulation index (Igeo) followed the order: Cd > As > Zn > Cu > Pb > Hg > Al > Cr > Tl, the pollution extent of Cd and As were serious at m sampling sites.


2019 ◽  
pp. 1-9
Author(s):  
Ernest Eteng

This study was conducted between February and September, 2018 to evaluate heavy metal concentrations of road dust soils supporting arable crop production along five major roads connecting the Umuahia Metropolis to surrounding cities. Thirty soil samples from five major roads were collected during the dry and wet seasons at 10 m, 20 m and 30 m distances from road edges. The heavy metals were analyzed using tri-acid digestion. The results showed that mean concentrations of the heavy metals varied widely and had significant different between the seasons, among the five major roads and usually, decreased with increased in distance from the road. Accordingly, the study indicates that, the relative sequence of abundance followed the order: Fe > Zn ≥ Pb > Cd > Cr ≥ Cu > Co > Ni > Se ≥ As. Higher content of the heavy metals was recorded during the dry season (83.94 mg kg-1) than the wet season (74.72 mg kg-1). Among the roads, higher content of the heavy metals was recorded in Uzoakoli road (105.50 mg kg-1) while, the least was recorded in Aba road (53.37 mg kg-1). Similarly, higher contents of the heavy metals were recorded within the distance of 10 meters (94.56 mg kg-1) while, the least was recorded in 30 meters (61.73 mg kg-1) away for the roadside. Since the roadside soils in Umuahia Metropolis are being extensively cultivated for agricultural production, proper biomonitoring of activities in the urban environment should be done as often as possible to enlighten the public on dangers of heavy metal pollution.


2020 ◽  
Vol 9 (4) ◽  
pp. 574-582
Author(s):  
N. K. Wardani ◽  
T. Prartono ◽  
S. Sulistiono

This area, which is located near the Banten Bay, is quite active with anthropogenic activities such as industry, fisheries, settlements, and shipyards that have the potential to pollute the environment with heavy metals. This study aims to determine the chemical environmental conditions of the waters and the concentration of heavy metals in the sediments of Banten Bay. Sediment samples were taken at five stations consisting of river and bay sections in April, May, July, August, and September 2019. Heavy metal content in sediments was analyzed according to APHA 2012 using hydrochloric acid and nitric acid destruction methods. The results of heavy metal concentrations in sediments were compared with ANZECC 2000 regulations and sediment quality was determined using the Geo-accumulation Index. The sediment at the observation site is dominated by the silt fraction. The concentration of heavy metals in this study was obtained in the form of lead (Pb) ranging from <0.05 to 6.408 mg / Kg, copper (Cu) ranging from 0.059 to 8.791 mg / Kg, and cadmium (Cd) ranging from 0.042 to 0.605 mg / K. While based on The level of heavy metal contamination in sediments using the Geo-accumulation index (I Geo), the value of all metal types in each month has a value <0.000 at all observation stations. Thus it is concluded that the concentration of heavy metals in the sediment is lower than the threshold determined during the observation. So that the metal concentration weight in the sediment has no significant effect on the environment.


2021 ◽  
Vol 232 (5) ◽  
Author(s):  
Dawid Kupka ◽  
Mateusz Kania ◽  
Marcin Pietrzykowski ◽  
Adam Łukasik ◽  
Piotr Gruba

AbstractIntensified vehicular traffic causes increased heavy metal contamination of the environment. We investigated the heavy metal chemistry of soils located under silver fir stands in the vicinity of Poland’s S7 roadway. Three sampling sites were located in fir stands in central Poland. Fieldwork included soil sampling of the organic (O) horizon and mineral (A) topsoil. We analyzed the soil pH, carbon (C) and nitrogen (N) concentration, and the HCl-extractable forms of sodium (Na) and heavy metals: copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn). The stoichiometric ratios Cu:C, Ni:C, Pb:C, and Zn:C were also calculated. In all sites, a higher Na concentration was found in the 0–10 m from the forest edge. This zone was characterized by increased pH in the O horizon, increased Zn and Ni in the A horizon, and a decreased Pb in the O horizon. There was no clear pattern for the Cu concentration. The Ni:C and Zn:C ratios were correlated with pH, while Pb:C and Cu:C ratios were correlated with the clay minerals. HCl-extractable Ni and Zn concentrations in A horizon were greater near the roadway, revealing strong pH dependency. The roadway affects the geochemical background of the topsoil in the nearby fir stands. Mechanistically, we suggest that Na increases the soil pH and therefore enhances the ability of soil organic matter to bind Ni and Zn by releasing hydrogen from soil organic matter functional groups into the soil solution. A depleted Pb near the road was likely owing to the strong competition from Na.


2019 ◽  
Vol 99 ◽  
pp. 04004
Author(s):  
Khasan Nazriddinzoda ◽  
Valery Udachin ◽  
Ivan Blinov ◽  
Mikhail Shtenberg ◽  
Pavel Aminov ◽  
...  

Heavy metal contamination in the road dust due to traffic in the capital city of Tajikistan was investigated. Concentrations of potentially toxic elements (Ba, Cu, Cd, Co, Cr, Pb, Ni, Zn and As) in particle size of 63 μm were analyzed. The highest potentially toxic element concentration was Zn (312 mg/kg), whereas the lowest was Co (5.3 mg/kg).The biggest contribution to road dust is atmospheric deposition due to metal traffic density makes slight contribution to heavy metal contamination. According to the calculation on enrichment factor (EF), heavy metals decrease in the order of Sb>Cd>As>Cu>Zn>Pb. The Dushanbe city road dust particles are potentially influenced by minimum three sources of metals including: urban sources (vehicles traffic, etc.); industrial sources (cement, reinforcement plant, etc.); geogenic sources (soils, dusts, rock weathering, etc.).


2020 ◽  
Vol 13 ◽  
pp. 194008292093312
Author(s):  
Waseem Razzaq Khan ◽  
Syaizwan Zahmir Zulkifli ◽  
Mohamad Roslan bin Mohamad Kasim ◽  
Martin Zimmer ◽  
Ahmad Mustapha Pazi ◽  
...  

Matang Mangrove Forest Reserve (MMFR) is one of the most productive and managed forests in the world. On the other hand, it has become a concern whether MMFR is being degraded as a result of exposure to industrial pollution. Industries located around MMFR dispose effluents contaminated by heavy metals. This study was conducted to analyze heavy metal contamination and risk assessment status in MMFR sediments. Sediment samples from six compartments were collected based on age and location of the mangrove plantation. Total metal digestion and modified sequential extraction were performed to estimate the concentration of heavy metals. Based on the estimation, risk assessment code, geo-accumulation index, pollution load index, and contamination factor were computed to classify the compartments according to their contamination and pollution levels. Organic matter and sediment texture (silt, clay, and sand content) were also analyzed to find its correlation with heavy metals. According to the results, high concentrations for Copper, Nickel, and Cadmium were observed in Compartment 42, while Compartment 18 and Compartment 74 showed higher concentrations for Zinc and Lead. Heavy metals showed weak positive correlation with clay and silt, but weak negative correlation with sand. For organic matter, only Zinc showed statistically significant but weak negative correlation. Risk assessment code, geo-accumulation index, pollution load index, and contamination factor categorized the compartments into unpolluted to moderately polluted. Based on the study outcomes, it can be concluded that MMFR, although acquiring industrial discharge, is not with a high risk of heavy metal contamination.


Author(s):  
Defri Yona ◽  
Syarifah Hikmah Julinda Sari ◽  
Anedathama Kretarta ◽  
Citra Ravena Putri Effendy ◽  
Misba Nur Aini ◽  
...  

This study attempted to analyze the distribution and contamination status of heavy metals (Cu, Fe and Zn) along western coast of Bali Strait in Banyuwangi, East Java. Bali Strait is one of the many straits in Indonesia with high fisheries activities that could potentially contributed to high heavy metal pollution. There were five sampling areas from the north to south: Pantai Watu Dodol, Pantai Kalipuro, Ketapang Port, Pantai Boom and Muncar as the fish landing area. Heavy metal pollution in these locations comes from many different activities such as tourism, fish capture and fish industry and also domestic activities. Contamination factor (CF), geo-accumulation index (Igeo) and enrichment factor (EF) of each heavy metal were calculated to obtain contamination status of the research area. The concentrations of Fe were observed the highest (1.5-129.9 mg/kg) followed by Zn (13.2-23.5 mg/kg) and Cu (2.2-7.8 mg/kg). The distribution of Cu, Fe and Zn showed variability among the sampling locations in which high concentrations of Cu and Zn were higher in Ketapang Port, whereas high concentration of Fe was high in almost all sampling locations. According to the pollution index, contamination factors of Cu, Fe and Zn were low (CF < 1 and Igeo < 1). However, high index of EF (> 50) showed high influence of the anthropogenic activities to the contribution of the metals to the environment. This could also because of the high background value used in the calculation of the index due to the difficulties in finding background value from the sampling areas.Keywords: heavy metals, pollution index, contamination factor, geo-accumulation index, Bali Strait


Author(s):  
Sangeetha Annam ◽  
Anshu Singla

Abstract: Soil is a major and important natural resource, which not only supports human life but also furnish commodities for ecological and economic growth. Ecological risk has posed a serious threat to the ecosystem by the degradation of soil. The high-stress level of heavy metals like chromium, copper, cadmium, etc. produce ecological risks which include: decrease in the fertility of the soil; reduction in crop yield & degradation of metabolism of living beings, and hence ecological health. The ecological risk associated, demands the assessment of heavy metal stress levels in soils. As the rate of stress level of heavy metals is exponentially increasing in recent times, it is apparent to assess or predict heavy metal contamination in soil. The assessment will help the concerned authorities to take corrective as well as preventive measures to enhance the ecological and hence economic growth. This study reviews the efficient assessment models to predict soil heavy metal contamination.


Sign in / Sign up

Export Citation Format

Share Document