scholarly journals Multiple Factors Influence the Accumulation of Heavy Metals (Cu, Pb, Ni, Zn) in Forest Soils in the Vicinity of Roadways

2021 ◽  
Vol 232 (5) ◽  
Author(s):  
Dawid Kupka ◽  
Mateusz Kania ◽  
Marcin Pietrzykowski ◽  
Adam Łukasik ◽  
Piotr Gruba

AbstractIntensified vehicular traffic causes increased heavy metal contamination of the environment. We investigated the heavy metal chemistry of soils located under silver fir stands in the vicinity of Poland’s S7 roadway. Three sampling sites were located in fir stands in central Poland. Fieldwork included soil sampling of the organic (O) horizon and mineral (A) topsoil. We analyzed the soil pH, carbon (C) and nitrogen (N) concentration, and the HCl-extractable forms of sodium (Na) and heavy metals: copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn). The stoichiometric ratios Cu:C, Ni:C, Pb:C, and Zn:C were also calculated. In all sites, a higher Na concentration was found in the 0–10 m from the forest edge. This zone was characterized by increased pH in the O horizon, increased Zn and Ni in the A horizon, and a decreased Pb in the O horizon. There was no clear pattern for the Cu concentration. The Ni:C and Zn:C ratios were correlated with pH, while Pb:C and Cu:C ratios were correlated with the clay minerals. HCl-extractable Ni and Zn concentrations in A horizon were greater near the roadway, revealing strong pH dependency. The roadway affects the geochemical background of the topsoil in the nearby fir stands. Mechanistically, we suggest that Na increases the soil pH and therefore enhances the ability of soil organic matter to bind Ni and Zn by releasing hydrogen from soil organic matter functional groups into the soil solution. A depleted Pb near the road was likely owing to the strong competition from Na.

Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 448
Author(s):  
Mahrous Awad ◽  
Zhongzhen Liu ◽  
Milan Skalicky ◽  
Eldessoky S. Dessoky ◽  
Marian Brestic ◽  
...  

Heavy metals (HMs) toxicity represents a global problem depending on the soil environment’s geochemical forms. Biochar addition safely reduces HMs mobile forms, thus, reducing their toxicity to plants. While several studies have shown that biochar could significantly stabilize HMs in contaminated soils, the study of the relationship of soil properties to potential mechanisms still needs further clarification; hence the importance of assessing a naturally contaminated soil amended, in this case with Paulownia biochar (PB) and Bamboo biochar (BB) to fractionate Pb, Cd, Zn, and Cu using short sequential fractionation plans. The relationship of soil pH and organic matter and its effect on the redistribution of these metals were estimated. The results indicated that the acid-soluble metals decreased while the fraction bound to organic matter increased compared to untreated pots. The increase in the organic matter metal-bound was mostly at the expense of the decrease in the acid extractable and Fe/Mn bound ones. The highest application of PB increased the organically bound fraction of Pb, Cd, Zn, and Cu (62, 61, 34, and 61%, respectively), while the BB increased them (61, 49, 42, and 22%, respectively) over the control. Meanwhile, Fe/Mn oxides bound represents the large portion associated with zinc and copper. Concerning soil organic matter (SOM) and soil pH, as potential tools to reduce the risk of the target metals, a significant positive correlation was observed with acid-soluble extractable metal, while a negative correlation was obtained with organic matter-bound metal. The principal component analysis (PCA) shows that the total variance represents 89.7% for the TCPL-extractable and HMs forms and their relation to pH and SOM, which confirms the positive effect of the pH and SOM under PB and BB treatments on reducing the risk of the studied metals. The mobility and bioavailability of these metals and their geochemical forms widely varied according to pH, soil organic matter, biochar types, and application rates. As an environmentally friendly and economical material, biochar emphasizes its importance as a tool that makes the soil more suitable for safe cultivation in the short term and its long-term sustainability. This study proves that it reduces the mobility of HMs, their environmental risks and contributes to food safety. It also confirms that performing more controlled experiments, such as a pot, is a disciplined and effective way to assess the suitability of different types of biochar as soil modifications to restore HMs contaminated soil via controlling the mobilization of these minerals.


2014 ◽  
Vol 675-677 ◽  
pp. 654-657
Author(s):  
Qiu Jun Li ◽  
Rui Jie Zhang ◽  
Ying Hui Wang ◽  
Da Rong Li

In this study we compared the efficiency of four kinds of amendments (silkworm excrement, coconut husk, red mud, sepiolite) and their mixtures to immobilize the heavy metals present in a contaminated acidic soil (Pb:420 mg ·kg−1; Zn :334 mg· kg−1) and to influence several enzymatic activities. The results showed that, silkworm excrement, coconut husk and their mixtures, which had high pH and/or high content of organic matter, reduced exchangeable Pb in the soil by 18% to 46%, and reduced available Zn by 24% to 35%, which was more efficacious than single sepiolite. The complex of silkworm excrement and red mud had a great influence on soil pH, while coconut husk increased the content of organic matter in soil significantly.


2020 ◽  
Author(s):  
Collin J. Weber ◽  
Alexander Santowski ◽  
Peter Chifflard

Abstract. Heavy metals are known to be among the one of the major environmental pollutants especially in urban areas and, as is generally known, can pose environmental risks as well as direct risks to humans. This study deals with the spatial distribution of heavy metals in different pavement joints in the inner-city area of Marburg (Hesse, Germany). Pavement joints, defined as the joint between paving stones and filled with different materials, have so far hardly been considered as anthropogenic urban soils. Nevertheless, they have an important role as possible sites of infiltration for surface runoff accumulation areas, and are therefore a key feature of urban water regimes. In order to investigate the spatial variability of heavy metals in pavement joints, a geospatial sampling approach was carried out on six inner-city sampling sites, followed by heavy metals analyses via ICP-MS, and additional pH and organic matter analyses. To obtain a risk assessment of heavy metal pollution, different pollution indices were calculated based on regional geochemical background values. Pavement joints examined consist mainly of basaltic gravel, sands, organic material and anthropogenic artefacts (e.g., glass, plastics) with an average joint size of 0.89 cm and a vertical depth of 2–10 cm. In general, the pavement joint material shows high organic matter loads (average 11.0 % by mass) and neutral to alkaline pH values. Besides high Al and Fe content, the heavy metals Cr, Ni, Cd and Pb are mainly responsible for the contamination of pavement joints. From the Geo-accumulation Index, the pollution in pavement joints regarding those metals, can be considered as moderate to high. Deterioration of soil quality was reported according to the Pollution Load Index (PLI) for 82.8 % of all sampling points, as well as a very strong potential Ecological Risk (RI) for 27.6 % of the points. The identified spatial pattern of maximum heavy metal loads in pavement joints, could not be attributed solely to traffic emissions, as commonly reported for urban areas. Higher concentrations were detected at runoff accumulation areas (e.g., drainage gutters), and at the lowest sampling points with high drainage accumulation tendencies. Additional Spearman correlation analyses show clear positive correlation between runoff accumulation value and PLI or RI index (rsp = 0.83; p 


2018 ◽  
Vol 39 (5) ◽  
pp. 1921
Author(s):  
Laércio Santos Silva ◽  
Izabel Cristina de Luna Galindo ◽  
Vinícius Augusto Filla ◽  
Romário Pimenta Gomes ◽  
Milton César Costa Campos ◽  
...  

Sequential extraction or chemical fractionation of heavy metals allows inferences to be made about their origin, occurrence, bioavailability, toxic potential and environmental contamination. Thus, the present study aimed to assess the distribution of Cu, Mn, Ni, Pb and Zn among the different soil fractions and landscape compartments of a yellow latosol cultivated with vegetables. Soil samples were collected from five areas cultivated with tomato (Lycopersicon esculentum, Mill.), lettuce (Lactuca sativa), chili pepper (Capsicum annuum L.) and chard (Beta vulgaris L.) in different slope positions (upper, middle, lower), and four reference areas (native forest), at a depth of 0.00 - 0.20 m. Heavy metal levels were also assessed in water used to irrigate the crops and for human consumption by collecting 200 ml of water samples from reservoirs. The soil samples were sequentially fractionated to quantify the concentrations of adsorbed Cu, Mn, Ni, Pb and Zn in the exchangeable (EF), organic matter (OF), amorphous and crystalline iron oxide fractions (AFeOx and CFeOx). Landscape position only interfered significantly in heavy metal adsorption in the soil for Cu and Ni associated with CFeOx and Zn bound to the EF in the farming areas. The highest Cu, Ni, Pb and Zn levels were found in the fractions with less stable chemical bonds (bound to organic matter), in addition to a strong affinity between Cu, Zn and Mn and the oxide fractions (AFeOx + CFeOx). The low affinity of Pb and Ni for the AFeOx and CFeOx fractions indicates greater contamination potential for the water reservoirs. In the short term, organic matter is the main source of remediation for heavy metal contamination in soil, making it important to adopt conservation practices aimed at reducing OM losses.


2016 ◽  
Vol 18 (4) ◽  
pp. 742-760 ◽  

<div> <p>This paper present migration of some selected heavy metal (zinc, lead, copper, chromium and nickel) of roadside soil samples from along Ilesa-Akure highway with a view to assess the degree of contamination such soils contain and the likelihood that this contamination can be remobilized. Soil samples were collected from 5 locations (Ilesa, Ipetu-ijesa, JABU, Ilara-mokin and FUTA north gate) at depths of 0-5, 15-20, 35-40 and 55-60cm and analysed for the five selected heavy metals in the bulk sample and clay fraction. Their concentrations and distributions in four different road verge zones (5m, 30m, 60m and 110m) were determined. The 5m zone had the highest mean concentration of the five metals whereas the 110m zone exhibited the lowest mean concentration. Zinc and lead exhibited a significant decrease in the roadside soils with the increasing distance from the road while chromium and nickel showed significant increase, copper on the other hand showed no significant difference. Quantitative assessment of the heavy metal contamination using the I<sub>geo </sub>and <em>PI</em> indexes showed that the selected heavy metals were in the order of Cu &lt; Pb &lt; Zn &lt; Ni &lt;Cr for both Indexes. Soil characteristics (which include pH, Cation exchange capacity {CEC}, organic matter and other basic geotechnical tests) responsible for the mobility and vertical distributions of these heavy metals from the road side soil were also assessed.</p> </div> <p>&nbsp;</p>


2021 ◽  
Vol 7 (8) ◽  
pp. 1459-1471
Author(s):  
Benabid Abderrahmane ◽  
Benmbarek Naima ◽  
Mansouri Tarek ◽  
Merdas Abdelghani

This study is one of the first works which examined the assessment of heavy metal contamination of pavement-side soils in Algeria. It deals with the section of National Highway 3 (RN3), which crosses the wilaya of Batna. In the environment of sampling sites there is no industry or dangerous activity on the environment, the heavy metals addressed in this study are (Pb, Cu, Cr, Fe, Ni, Zn), their origin being road traffic. The objectives of this study were to: (1) Determine the concentrations of heavy metals in road dust; (2) Identify the sources of different heavy metals in soils and road dust; (3) Exploring the extent of heavy metal pollution in neighbouring soils. To this end, 33 samples were collected, including 03 road dust and 30 soil samples over different distances from 1m to 80m. The samples were analyzed by FRX. Results indicated that concentrations in road dust were higher than in soil. The distribution of heavy metal concentrations in dust is Fe>Pb>Zn>Cu>Cr>Ni, and the distribution in the ground is Fe>Pb>Cu>Zn>Cr>Ni in the direction of Biskra and in the opposite direction and decreases away from the road, while the distribution in the central solid ground is Fe> Cu>Cr>Pb>Zn>Ni. Climatic conditions such as wind, rainfall, temperature, humidity and the nature of the terrain were also significantly related to their enrichment in these roadside soils. The enrichment factor (EF) and the geo-accumulation index (Igeo) were calculated, as well as all elements with a (EF) that ranges from moderate to high to extremely contaminated, reflecting the high anthropogenic load of these metals in the study area and the results of the Igéo accumulation indices confirm the results obtained for the enrichment factor (EF). Doi: 10.28991/cej-2021-03091736 Full Text: PDF


2013 ◽  
Vol 5 (2) ◽  
pp. 81-84
Author(s):  
AHMM Morshed ◽  
MA Farukh ◽  
MA Sattar

A study was carried out to determine the status of heavy metals in farm and urban soils from intensively growing areas of Mymensingh. Sixty three soil samples were collected from 11 upazillas of Mymensingh. From these samples total amount of heavy metals like Pb, Cd, Ni, Cr, Fe and Mn were tested. The soils were also analyzed for texture, pH and organic matter content. The mean concentrations of Pb, Cd, Ni, Cr, Fe and Mn in farm soils were 19.64, 0.32, 39.80, 14.10, 1800.40, 135.66 ?g g-1, respectively and the mean concentrations of above metals in urban soils were 20.93, 0.37, 36.90, 28.85, 1810.08, 127.05 ?g g-1, respectively. The heavy metal concentrations in farm soils were within the limit allowed for maximum acceptable concentration for satisfactory crop production. Heavy metals in urban soils were also below the limit considered as contaminated soil. Most of the heavy metals in both farm and urban soils were negatively correlated with sand and positively correlated with silt. There was no significant correlation between heavy metal content and soil pH or organic matter in both farm and urban soils with very few exceptions. Most of the heavy metals did not show any significant correlation with each other expect Fe which showed significant correlation with Pb, Ni, Cr, Mn and Cd for both farm and urban soils.DOI: http://dx.doi.org/10.3329/jesnr.v5i2.14798 J. Environ. Sci. & Natural Resources, 5(2): 81-84 2012


Author(s):  
Sangeetha Annam ◽  
Anshu Singla

Abstract: Soil is a major and important natural resource, which not only supports human life but also furnish commodities for ecological and economic growth. Ecological risk has posed a serious threat to the ecosystem by the degradation of soil. The high-stress level of heavy metals like chromium, copper, cadmium, etc. produce ecological risks which include: decrease in the fertility of the soil; reduction in crop yield & degradation of metabolism of living beings, and hence ecological health. The ecological risk associated, demands the assessment of heavy metal stress levels in soils. As the rate of stress level of heavy metals is exponentially increasing in recent times, it is apparent to assess or predict heavy metal contamination in soil. The assessment will help the concerned authorities to take corrective as well as preventive measures to enhance the ecological and hence economic growth. This study reviews the efficient assessment models to predict soil heavy metal contamination.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1326
Author(s):  
Calvin F. Glaspie ◽  
Eric A. L. Jones ◽  
Donald Penner ◽  
John A. Pawlak ◽  
Wesley J. Everman

Greenhouse studies were conducted to evaluate the effects of soil organic matter content and soil pH on initial and residual weed control with flumioxazin by planting selected weed species in various lab-made and field soils. Initial control was determined by planting weed seeds into various lab-made and field soils treated with flumioxazin (71 g ha−1). Seeds of Echinochloa crus-galli (barnyard grass), Setaria faberi (giant foxtail), Amaranthus retroflexus (redroot pigweed), and Abutilon theophrasti (velvetleaf) were incorporated into the top 1.3 cm of each soil at a density of 100 seeds per pot, respectively. Emerged plants were counted and removed in both treated and non-treated pots two weeks after planting and each following week for six weeks. Flumioxazin control was evaluated by calculating percent emergence of weeds in treated soils compared to the emergence of weeds in non-treated soils. Clay content was not found to affect initial flumioxazin control of any tested weed species. Control of A. theophrasti, E. crus-galli, and S. faberi was reduced as soil organic matter content increased. The control of A. retroflexus was not affected by organic matter. Soil pH below 6 reduced flumioxazin control of A. theophrasti, and S. faberi but did not affect the control of A. retroflexus and E. crus-galli. Flumioxazin residual control was determined by planting selected weed species in various lab-made and field soils 0, 2, 4, 6, and 8 weeks after treatment. Eight weeks after treatment, flumioxazin gave 0% control of A. theophrasti and S. faberi in all soils tested. Control of A. retroflexus and Chenopodium album (common lambsquarters) was 100% for the duration of the experiment, except when soil organic matter content was greater than 3% or the soil pH 7. Eight weeks after treatment, 0% control was only observed for common A. retroflexus and C. album in organic soil (soil organic matter > 80%) or when soil pH was above 7. Control of A. theophrasti and S. faberi decreased as soil organic matter content and soil pH increased. Similar results were observed when comparing lab-made soils to field soils; however, differences in control were observed between lab-made organic matter soils and field organic matter soils. Results indicate that flumioxazin can provide control ranging from 75–100% for two to six weeks on common weed species.


Sign in / Sign up

Export Citation Format

Share Document