Corrosion Modelling of Gas Wells With Excessive Sand Production: Case Study of Field Y in Indonesia

Author(s):  
I.A. Biladi

This publication addresses risk analysis and the potential of sand induced tubing erosion in gas production wells due to high rate gas wells combined with excessive water and sand production. As gas wells become more mature, it is inevitable that water will be produced not only from vapour but also from aquifer. This presents a problem, especially in the unconsolidated wells where sands will be massively produced. Therefore, this publication addresses the potential of tubular damage from sand production in gas wells. The authors have analysed two published case studies using the approach of corrosion and erosion modelling, as well as tubing stress analysis to ensure long term tubing integrity. The calculations show that tubing design will be heavily affected by the sand prediction, especially for older tubing with thinner layer and possibility of deformation. Therefore, it is imperative to propose a more conservative tubing design especially in sour wells with excessive water production and where there is the possibility of sand production. It is also worth noting that as wells become older, with rising water saturation also comes the possibility of higher sand production due to the effects of shear stress. This publication should become an incentive for operators to conduct a more thorough completion examination for tubular integrity design in high rate gas wells especially ones with excessive sand production. This publication addresses a new approach in designing tubular goods for natural gas wells with the tendency of excessive sand production due to development of water saturation in mature gas wells.

2006 ◽  
Author(s):  
Hisham A. Nasr-El-Din ◽  
Saad M. Al-Driweesh ◽  
Kirk Michael Bartko ◽  
Hamed Hasan Al-Ghadhban ◽  
Venkateshwaran Ramanathan ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
pp. 36-41
Author(s):  
Maksim A. Popov ◽  
◽  
Dmitriy G. Petrakov ◽  

The influence of reservoir rock properties on sand production in wells is considered. It was concluded that the rock should be considered rather not from the point of view of its strength, but from the point of view of the type of cementitious substance and its distribution. When predicting sand production, it is necessary to take into account the internal stresses of the rocks, as well as the change in these stresses during drilling, perforation and operation of the formation due to the violation of their initial state. Within the framework of this work, an analysis of the main causes of sand production during the operation of gas wells and the negative consequences of sand production for gas production equipment is presented. It has been established that water breakthrough, formation depletion, pressure drop at the bottom of the wells due to their frequent shutdown are the main prerequisites for the removal of sand from the bottomhole formation zone. Sand production is associated with such negative consequences as plugging in wells, erosion of underground and surface equipment, collapse of the top of the bottomhole formation zone and production strings. The main technologies for the prevention and elimination of accidents associated with the removal of mechanical particles from the reservoir are considered. Based on the research results, an algorithm was proposed for selecting technological modes of well operation in conditions of water and sand. The parameters for choosing the optimal operating mode of a gas well are substantiated, in which sand is not extracted with the subsequent disabling of downhole and wellhead equipment, the integrity of the bottomhole zone is not violated, and the well is not selfcontained. The results obtained can be applied to improve the efficiency of gas wells operation and predict their trouble-free operation.


2005 ◽  
Vol 52 (1-2) ◽  
pp. 413-418 ◽  
Author(s):  
C. Wangnai ◽  
R.J. Zeng ◽  
J. Keller

The characteristics of the glucose degradation by acidogenesis processes were investigated both in a long-term operating laboratory-scale continuously stirred tank reactor and in short-term experiments utilising a titration and off-gas analysis (TOGA) sensor. The results obtained from continuous-flow experiments in both reactors demonstrated that the TOGA sensor can be applied as a useful tool for the study of acidogenesis processes under steady-state and dynamic conditions. No significant effect from the culture transfer could be detected in the study with the TOGA sensor. Furthermore, the variation of gas production rate could be monitored at real time by the TOGA sensor. The experiments showed that the distribution of acidogenic products in the liquid and the gas phase was significantly influenced by the hydraulic retention time at least in the short term.


Author(s):  
Miel Hofmann ◽  
◽  
Sudad Al-Obaidi ◽  
I. Kamensky ◽  

As a result of flooding and accumulations of liquid at the bottomholes, the operating conditions of gas wells become complicated, so that they end up self-squeezing and losing of gas production. A method is proposed for determining the technological parameters of operation of the gas wells with the purpose of removing liquid from the bottom of the wells. Data from the gas dynamics and special studies were used to develop this method, which has been tested on one of the oil and gas condensate fields. It offers the possibility to increase the accuracy of the information provided by the fund and to ensure that the production wells are operated as efficiently as possible with the use of this method. In the case of liquid accumulation in the well that is insignificant, or when water is present in the well, the technique is beneficial in that it allows determining the technological parameters of well operation and ensuring the removal of the liquid from the bottom of the well.


2013 ◽  
Vol 703 ◽  
pp. 135-138
Author(s):  
Ling Feng Li

For natural gas well, material selection of gas-well wellhead assembly is an important factor of gas production system life. In order to ensure the long-term development of gas wells, this paper mainly introduces the material selection of gas-well wellhead assembly, proposes the optimization idea and technique of gas-well wellhead assembly. By taking W well as an example, this paper optimizes the material selection of gas-well wellhead assembly for W well. For application, the optimal materials of gas-well wellhead assembly in W well have good performance of corrosion resistance.


SPE Journal ◽  
2007 ◽  
Vol 12 (04) ◽  
pp. 468-474 ◽  
Author(s):  
Alireza Nouri ◽  
Hans H. Vaziri ◽  
Hadi Arbi Belhaj ◽  
M. Rafiqul Islam

Summary Installing sand control in long horizontal wells is difficult and particularly challenging in offshore fields. It is, therefore, imperative to make decisions with regard to the most optimum completion type objectively and based on reliable assessment of the sanding potential and its severity over the life of the well for the intended production target. This paper introduces a predictive tool that forecasts not only the initiation of sanding, but also its rate and severity in real time. A series of well-documented experiments on a large-size horizontal wellbore was simulated using a finite difference numerical model. The model accounts for the interaction between fluid flow and mechanical deformation of the medium, capturing various mechanisms of failure. The model allows capturing the episodic nature of sanding and the resulting changes in the geometry and formation consistency and behavior within the sand impacted regions. Sand detachment is simulated by removal of the elements that are deemed to have satisfied the criteria for sanding based on considerations of physics, material behaviour and laws of mechanics. The proposed numerical model is designed to account for many of the factors and mechanisms that are known to influence sanding in the field and as such can be used as a practical tool for predicting the frequency and severity of sand bursts and changes in operating conditions that can be considered for mitigating or managing such problems. The model shows reasonable agreement with the experimental results in terms of borehole deformation and sanding rates. The model correctly predicted initiation of shear failure from the sides of the borehole and its propagation to the boundaries of the sample. It was further seen that the propagation of the shear failed zone resulting from sand production agreed well with the numerical pattern of failure growth upon removal of elements satisfying the sanding criteria. The approach and concepts used are considered suitable for application to field problems involving horizontal wells. Introduction A significant proportion of the future oil and gas production is expected to come from sand-prone reservoirs, many of which are offshore. While these reservoirs are highly prolific they are complex to develop and manage. Typical cost of completing a major offshore well exceeds $100 million and these wells are expected to remain productive for 20 years and longer. The control of solids production in these high-rate wells over the life of the well is a challenge and requires a good understanding of the mechanical behavior of the formation under a variety of conditions. Various options are available, ranging from placing active sand control, such as gravel pack and frac pack, to natural completion, such as a cased and perforated hole. Objectivity is required in choosing the correct completion type, which must account for the production strategy and natural changes in the reservoir such as changes in the stress state, permeability, and multiphase flow, including water cut. Once the completion type is chosen, it must be operated optimally to maximize production while maintaining efficiency and longevity. For instance, in sand-control completions, operations must be tailored to mitigate generation and transport of fines that can cause plugging of the gravel pack and lead to screen erosion, whereas in natural completions, the emphasis would be in preventing formation sand production or keeping it under the tolerance that can be handled by the facility. Utilization of a reliable sand production prediction tool is essential in selecting the optimum completion technique and optimization of the operational conditions.


2021 ◽  
Author(s):  
Zeeshan Ahmad ◽  
Abdullah Alhaj Al Hosini ◽  
Mohammed Ibrahim Al Janahi ◽  
Abdulla Mohammed Al Marzouqi ◽  
Muhammad Ali SIDDIQUI ◽  
...  

Abstract Well killing always remains a most radical part during the life cycle of gas production wells with reservoir and completion integrity issues. In moderate permeability gas reservoirs, it will be more challenging due to below issues; Low pressure gas reservoir with moderate reservoir permeability where hydrostatic head of water is almost double the formation pressure Well with the sustainable annulus pressures (Production & first cemented annulus) Well with complex layered scale / asphalting deposition Completion jewelry component integrity breached Recycle reservoir with pressure maintenance Noise logs / corrosion logs generally conducted in order to assess the downhole completion jewelry and potential leak source prior any attempt for killing the well. To achieve the desired accessibility extensive scale analysis for better designing of scale clean out operation carried out specially to access the SPM. Variation of reservoir permeability considered for designing of optimized kill fluid for Depleted horizontal gas reservoir to cater challenge of complete losses. Effective fluid loss solutions designed and implemented to avoid abnormal fluid losses. Further more Polymer based gels used to kill and prevent the gas peculation to surface. Wells having completion and reservoir integrity issue isolated by considering cement zonal isolation, salt plugs, thru-tubing bridge plugs and nipple less plugs. All these barriers having their advantages and disadvantages with reference to work over objectives and their application limitations with respect to well conditions and detail study conducted for each candidate prior execution. Depletion Gas well killing and securing operation considered to be complex in nature and may result serious concern of rig intervention or well future objectives in case of improper execution. Gas wells having reservoir integrity issues and in case of 1st cemented Annulus pressure can be isolated by using thru-tubing bridge plugs. For retrieval of dummy from SPM must be done after setting of downhole plug to avoid any heavy suction for wire line operation. Cement plug operation is not suitable for such wells due to severe losses and fluid circulation limitation. Adequate selection of kill gel fluid as per reservoir characteristics will improve the killing efficiency.


SPE Journal ◽  
2007 ◽  
Vol 12 (04) ◽  
pp. 429-437 ◽  
Author(s):  
Jagannathan Mahadevan ◽  
Mukul Mani Sharma ◽  
Yannis C. Yortsos

Summary Gas expansion near the wellbore during production causes the evaporation of connate water. When the reservoir permeability is low, capillarity is controlling, causing liquid movement to the near-wellbore region, where drying rates are higher. In tight-gas sands or in shale gas formations, where capillarity is high, the gas production itself can cause depletion of the water saturation below residual values because of such evaporation. In this work, we present a study of the fundamental processes involved during the flow of a gas in a liquid-saturated porous medium. We have modeled evaporation by accounting for the capillary driven film flow, or "wicking," of saline liquid to the wellbore or the near-fracture region and the effect of gas expansion. It is shown that, for gas reservoirs with connate water saturation, large pressure drawdowns lead to a drying front that develops at the formation face and propagates into the reservoir. When pressure drops are lower, water rapidly redistributes because of capillarity-induced movement of liquid from high- to low-saturation regions. This phase redistribution causes higher drying rates near the wellbore. The results show, for the first time, the effect of both capillarity- induced film flow and gas compressibility on the rate of drying in gas wells. The model can be used to help maximize gas production under conditions such as water blocking by optimizing the operating conditions. Additionally, it can be used to obtain a better understanding of the impact of capillarity on evaporation and consequent processes, such as salt precipitation. Introduction Problems involving gas flow past trapped liquids in porous media are encountered in a variety of contexts, such as water block removal in gas wells, evaporation of volatile oils, and recovery of residual oil. In the case of a binary system, such as gas and water, the thermodynamic phase equilibrium can be represented by a simple linear law and gas injection that reduces to a drying problem in which the remaining liquid is evaporated by the flowing gas. Drying of wetting liquids in porous media has been studied by several authors. These studies mainly focused on pass-over drying, in which gas is passed over a porous medium saturated with the wetting liquid. This form of drying is controlled by the gas flow rate. However, when the liquid recedes into the porous medium, drying is controlled by the rate of diffusion of the components in the liquid phase in the pore spaces. Early in 1949, Allerton et al. studied through-drying of packed beds of crushed quartz and other porous materials by convection of dry gas. The study, however, did not consider the effect of gas compressibility or capillarity. Whitaker developed a diffusion theory of drying using volume averaging methods with constant pressure in the gas phase. This eliminated the effect of compressibility of gas on the drying rates and therefore is useful only in a pass-over drying context. Experimental and simulation studies of gas injection (Dullien et al. 1989; Holditch 1979; Kamath and Laroche 2003) showed that trapped water is first removed by a viscous displacement followed by a long period of evaporation. These studies showed that higher pressure drop, permeability, and temperatures caused greater rates of evaporation and faster progression of saturation drying fronts in both fractured and unfractured wells.


Sign in / Sign up

Export Citation Format

Share Document