Screening Criteria for Dump-flood Projects Implementation in Indonesia Fields

2021 ◽  
Author(s):  
A. K. Widi

Dump-flooding is a process of water flowing from higher-pressure-aquifer/ -water-bearing-reservoir to lower and depleted-pressure-oil reservoir through casing of the same well. This method is introduced to resolve groundwater scarcity of remote field problem. Furthermore, dump flood is a more cost-friendly method compare with conventional water injection, as it does not require water surface facility, more injection wells, and injection pipelines. Although dump-flooding has been successfully applied in many oilfields in the world, yet there is no standardized screening criteria that have been published. Therefore, this paper intends to generate a dump flood-organized-screening table to acquire potential oil reservoir candidates in Indonesia through dumpflooding projects based on the screening results. The screening table was constructed by gathering reservoir, aquifer, and fluid property data from positively-applied-dump flood project-oilfield. Two sensitivity methods – radar plot and CORRELL – were used to define critical and non-critical parameters which affected the oil recovery factor value. After being analyzed, the sensitivity results from CORRELL method were selected considering it is used frequently to measure the strength of the relationship between two variables. There are seven critical parameters (oil viscosity, reservoir permeability and porosity, depth, reservoir temperature, and aquifer porosity and permeability) that influence the decision to perform dump-flooding in one field. There are 134 out of 264 oilfields in Indonesia were tested with confident of 90% that were screened afterward. In addition, there are two factors to determine “go/no-go” decision, those are: range of tolerance and uncertainty. The status of the project can be declared as “go” if there is no out-of-tolerance-range-parameter and the uncertainty accumulation parameters is below 30%. After screening, 75 out of 134 fields were passed, where the majority of them were sandstone reservoirs with a dominant light oil compositions and been previously water flooded

2002 ◽  
Vol 5 (01) ◽  
pp. 33-41 ◽  
Author(s):  
L.R. Brown ◽  
A.A. Vadie ◽  
J.O. Stephens

Summary This project demonstrated the effectiveness of a microbial permeability profile modification (MPPM) technology for enhancing oil recovery by adding nitrogenous and phosphorus-containing nutrients to the injection water of a conventional waterflooding operation. The MPPM technology extended the economic life of the field by 60 to 137 months, with an expected recovery of 63 600 to 95 400 m3 (400,000 to 600,000 bbl) of additional oil. Chemical changes in the composition of the produced fluids proved the presence of oil from unswept areas of the reservoir. Proof of microbial involvement was shown by increased numbers of microbes in cores of wells drilled within the field 22 months after nutrient injection began. Introduction The target for enhanced oil recovery processes is the tremendous quantity of unrecoverable oil in known deposits. Roughly two thirds [approximately 55.6×109 m3 (350 billion bbl)] of all of the oil discovered in the U.S. is economically unrecoverable with current technology. Because the microbial enhanced oil recovery (MEOR) technology in this report differs in several ways from other MEOR technologies, it is important that these differences be delineated clearly. In the first place, the present project is designed to enhance oil recovery from an entire oil reservoir, rather than treat single wells. Even more important is the fact that this technology relies on the action of the in-situ microflora, not microorganisms injected into the reservoir. It is important to note that MPPM technology does not interfere with the normal waterflood operation and is environmentally friendly in that neither microorganisms nor hazardous chemicals are introduced into the environment. Description of the Oil Reservoir. The North Blowhorn Creek Oil Unit (NBCU) is located in Lamar County, Alabama, approximately 75 miles west of Birmingham. This field is in what is known geologically as the Black Warrior basin. The producing formation is the Carter sandstone of Mississippian Age at a depth of approximately 700 m (2,300 ft). The Carter reservoir is a northwest/ southeast trending deltaic sand body, approximately 5 km (3 miles) long and 1 to 1.7 km (1/2 to 1 mile) wide. Sand thickness varies from only 1 m up to approximately 12 m (40 ft). The sand is relatively clean (greater than 90% quartz), with no swelling clays. The field was discovered in 1979 and initially developed on 80-acre spacing. Waterflooding of the reservoir began in 1983. The initial oil in place in the reservoir was approximately 2.54×106 m3 (16 million bbl), of which 874 430 m3 (5.5 million bbl) had been recovered by the end of 1995. To date, North Blowhorn Creek is the largest oil field discovered in the Black Warrior basin. Oil production peaked at almost 475 m3/d (3,000 BOPD) in 1985 and has since declined steadily. Currently, there are 20 injection wells and 32 producing wells. Oil production at the outset of the field demonstration was approximately 46 m3/d oil (290 BOPD), 1700 m3/d gas (60 MCFD), and 493 m3/d water (3,100 BWPD), with a water-injection rate of approximately 660 m3/d (4,150 BWPD). Projections at the beginning of the project were that approximately 1.59×106 m3 oil (10 million bbl of oil) would be left unrecovered if some new method of enhanced recovery were not effective. Prefield Trial Studies The concepts of the technology described in this paper had been proven to be effective in laboratory coreflood experiments.1,2 However, it seemed advisable to conduct coreflood experiments with cores from the reservoir being used in the field demonstration. Toward this end, two wells were drilled, and cores were obtained from one for the laboratory coreflood experiments to determine the schedule and amounts of nutrients to be employed in the field trial.3


2021 ◽  
Author(s):  
Sultan Ibrahim Al Shemaili ◽  
Ahmed Mohamed Fawzy ◽  
Elamari Assreti ◽  
Mohamed El Maghraby ◽  
Mojtaba Moradi ◽  
...  

Abstract Several techniques have been applied to improve the water conformance of injection wells to eventually improve field oil recovery. Standalone Passive flow control devices or these devices combined with Sliding sleeves have been successful to improve the conformance in the wells, however, they may fail to provide the required performance in the reservoirs with complex/dynamic properties including propagating/dilating fractures or faults and may also require intervention. This is mainly because the continuously increasing contrast in the injectivity of a section with the feature compared to the rest of the well causes diverting a great portion of the injected fluid into the thief zone which ultimately creates short-circuit to the nearby producer wells. The new autonomous injection device overcomes this issue by selectively choking the injection of fluid into the growing fractures crossing the well. Once a predefined upper flowrate limit is reached at the zone, the valves autonomously close. Well A has been injecting water into reservoir B for several years. It has been recognised from the surveys that the well passes through two major faults and the other two features/fractures with huge uncertainty around their properties. The use of the autonomous valve was considered the best solution to control the water conformance in this well. The device initially operates as a normal passive outflow control valve, and if the injected flowrate flowing through the valve exceeds a designed limit, the device will automatically shut off. This provides the advantage of controlling the faults and fractures in case they were highly conductive as compared to other sections of the well and also once these zones are closed, the device enables the fluid to be distributed to other sections of the well, thereby improving the overall injection conformance. A comprehensive study was performed to change the existing dual completion to a single completion and determine the optimum completion design for delivering the targeted rate for the well while taking into account the huge uncertainty around the faults and features properties. The retrofitted completion including 9 joints with Autonomous valves and 5 joints with Bypass ICD valves were installed in the horizontal section of the well in six compartments separated with five swell packers. The completion was installed in mid-2020 and the well has been on the injection since September 2020. The well performance outcomes show that new completion has successfully delivered the target rate. Also, the data from a PLT survey performed in Feb 2021 shows that the valves have successfully minimised the outflow toward the faults and fractures. This allows achieving the optimised well performance autonomously as the impacts of thief zones on the injected fluid conformance is mitigated and a balanced-prescribed injection distribution is maintained. This paper presents the results from one of the early installations of the valves in a water injection well in the Middle East for ADNOC onshore. The paper discusses the applied completion design workflow as well as some field performance and PLT data.


2012 ◽  
Vol 5 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Gustavo-Adolfo Maya-Toro ◽  
Rubén-Hernán Castro-García ◽  
Zarith del Pilar Pachón-Contreras. ◽  
Jose-Francisco Zapata-Arango

Oil recovery by water injection is the most extended technology in the world for additional recovery, however, formation heterogeneity can turn it into highly inefficient and expensive by channeling injected water. This work presents a chemical option that allows controlling the channeling of important amounts of injection water in specific layers, or portions of layers, which is the main explanation for low efficiency in many secondary oil recovery processes. The core of the stages presented here is using partially hydrolyzed polyacrylamide (HPAM) cross linked with a metallic ion (Cr+3), which, at high concentrations in the injection water (5000 – 20000 ppm), generates a rigid gel in the reservoir that forces the injected water to enter into the formation through upswept zones. The use of the stages presented here is a process that involves from experimental evaluation for the specific reservoir to the field monitoring, and going through a strict control during the well intervention, being this last step an innovation for this kind of treatments. This paper presents field cases that show positive results, besides the details of design, application and monitoring.


2020 ◽  
Vol 21 (2) ◽  
pp. 339
Author(s):  
I. Carneiro ◽  
M. Borges ◽  
S. Malta

In this work,we present three-dimensional numerical simulations of water-oil flow in porous media in order to analyze the influence of the heterogeneities in the porosity and permeability fields and, mainly, their relationships upon the phenomenon known in the literature as viscous fingering. For this, typical scenarios of heterogeneous reservoirs submitted to water injection (secondary recovery method) are considered. The results show that the porosity heterogeneities have a markable influence in the flow behavior when the permeability is closely related with porosity, for example, by the Kozeny-Carman (KC) relation.This kind of positive relation leads to a larger oil recovery, as the areas of high permeability(higher flow velocities) are associated with areas of high porosity (higher volume of pores), causing a delay in the breakthrough time. On the other hand, when both fields (porosity and permeability) are heterogeneous but independent of each other the influence of the porosity heterogeneities is smaller and may be negligible.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1975 ◽  
Author(s):  
Junrong Liu ◽  
Lu Sun ◽  
Zunzhao Li ◽  
Xingru Wu

CO2 flooding is an important method for improving oil recovery for reservoirs with low permeability. Even though CO2 could be miscible with oil in regions nearby injection wells, the miscibility could be lost in deep reservoirs because of low pressure and the dispersion effect. Reducing the CO2–oil miscibility pressure can enlarge the miscible zone, particularly when the reservoir pressure is less than the needed minimum miscible pressure (MMP). Furthermore, adding intermediate hydrocarbons in the CO2–oil system can also lower the interfacial tension (IFT). In this study, we used dead crude oil from the H Block in the X oilfield to study the IFT and the MMP changes with different hydrocarbon agents. The hydrocarbon agents, including alkanes, alcohols, oil-soluble surfactants, and petroleum ethers, were mixed with the crude oil samples from the H Block, and their performances on reducing CO2–oil IFT and CO2–oil MMP were determined. Experimental results show that the CO2–oil MMP could be reduced by 6.19 MPa or 12.17% with petroleum ether in the boiling range of 30–60 °C. The effects of mass concentration of hydrocarbon agents on CO2–oil IFT and crude oil viscosity indicate that the petroleum ether in the boiling range of 30–60 °C with a mass concentration of 0.5% would be the best hydrocarbon agent for implementing CO2 miscible flooding in the H Block.


2018 ◽  
Vol 785 ◽  
pp. 159-170
Author(s):  
Vadim Aleksandrov ◽  
Kirill Galinskij ◽  
Andrey Ponomarev ◽  
Vadim Golozubenko ◽  
Yuriy Sivkov

One of the most important aspects in the activities of oil companies in the Western Siberia is to improve the effectiveness of water-flooding as the main method of impact on the formation. This is due to the fact that at the present time reservoirs of a complex structure with difficult to recover reserves prevail among newly introduced development objects, the extraction of which is extremely difficult using a simple method of water injection volumes regulation. First of all, this refers to reservoirs of Jurassic deposits, which are characterized by the most complex geological structure and porosity and permeability properties. A promising direction in improving the water-flooding system at such objects is the use of physical and chemical technologies to enhance the oil recovery of formations, and primarily, referring to the diverter technology. The research objective is to evaluate the effectiveness of using “hard” type diverter compositions to enhance oil recovery of formations. With the help of detailed oil-field analysis and field-geophysical studies, the nature of the development of oil reserves for Jurassic development sites has been assessed.


2010 ◽  
Vol 92 ◽  
pp. 207-212 ◽  
Author(s):  
Ke Liang Wang ◽  
Shou Cheng Liang ◽  
Cui Cui Wang

SiO2 nano-powder is a new type of augmented injection agent, has the ability of stronger hydrophobicity and lipophilicity, and can be adsorbed on the rock surface so that it changes the rock wettability. It can expand the pore radius effectively, reduce the flow resistance of injected water in the pores, enhance water permeability, reduce injection pressure and augment injection rate. Using artificial cores which simulated geologic conditions of a certain factory of Daqing oilfield, decompression and augmented injection experiments of SiO2 nano-powder were performed after waterflooding, best injection volume of SiO2 nano-powder under the low-permeability condition was selected. It has shown that SiO2 nano-powder inverted the rock wettability from hydrophilicity to hydrophobicity. Oil recovery was further enhanced after waterflooding. With the injection pore volume increasing, the recovery and decompression rate of SiO2 nano-powder displacement increased gradually. The best injected pore volume and injection concentration is respectively 0.6PV and 0.5%, the corresponding value of EOR is 6.84% and decompression rate is 52.78%. According to the field tests, it is shown that, in the low-permeability oilfield, the augmented injection technology of SiO2 nano-powder could enhance water injectivity of injection wells and reduce injection pressure. Consequently, it is an effective method to resolve injection problems for the low-permeability oilfield.


2018 ◽  
Vol 38 ◽  
pp. 01054
Author(s):  
Guan Wang ◽  
Rui Wang ◽  
Yaxiu Fu ◽  
Lisha Duan ◽  
Xizhi Yuan ◽  
...  

Mengulin sandstone reservoir in Huabei oilfield is low- temperature heavy oil reservoir. Recently, it is at later stage of waterflooding development. The producing degree of water flooding is poor, and it is difficult to keep yield stable. To improve oilfield development effect, according to the characteristics of reservoir geology, microbial enhanced oil recovery to improve oil displacement efficiency is researched. 2 microbial strains suitable for the reservoir conditions were screened indoor. The growth characteristics of strains, compatibility and function mechanism with crude oil were studied. Results show that the screened strains have very strong ability to utilize petroleum hydrocarbon to grow and metabolize, can achieve the purpose of reducing oil viscosity, and can also produce biological molecules with high surface activity to reduce the oil-water interfacial tension. 9 oil wells had been chosen to carry on the pilot test of microbial stimulation, of which 7 wells became effective with better experiment results. The measures effective rate is 77.8%, the increased oil is 1,093.5 tons and the valid is up to 190 days.


1972 ◽  
Vol 12 (02) ◽  
pp. 143-155 ◽  
Author(s):  
E.L. Claridge

Abstract A new correlation bas been developed for estimating oil recovery in unstable miscible five-spot pattern floods. It combines existing methods of predicting areal coverage and linear displacement efficiency and was used to calculate oil recovery for a series of assumed slug sizes in a live-spot CO2 slug-waterflood pilot test. The economic optimum slug size varies with CO2 cost; at anticipated CO2 costs the pilot would generate an attractive profit if performance is as predicted Introduction Selection of good field prospects for application of oil recovery processes other than waterflooding is often difficult. The principal reason is that other proposed displacing agents are far more costly proposed displacing agents are far more costly than water and usually sweep a lesser fraction of the volume of an oil reservoir (while displacing oil more efficiently from this fraction). Such agents must be used in limited amounts as compared with water; and this amount must achieve an appreciable additional oil recovery above waterflooding recovery. For these reasons, there is in general much less economic margin for engineering error in processes other than waterflooding. The general characteristics of the various types of supplemental recovery processes are well known, and adequate choices can be made of processes to be considered in more detail with respect to a given field. Comparative estimates must then be made of process performance and costs in order to narrow the choice. A much more detailed, definitive process-and-economic evaluation is eventually process-and-economic evaluation is eventually required of the chosen process before an executive decision can be made to commit large amounts of money to such projects. It is in the area between first choice and final engineering evaluation that this work applies. A areal cusping and vertical coning into producing wells. These effects can be seated by existing "desk-drawer" correlation which can confirm or deny the engineer's surmise that he has an appropriate match of recovery process and oil reservoir characteristics is of considerable value in determining when to undertake the costly and often manpower-consuming task of a definitive process-and-economic evaluation. process-and-economic evaluation. An examination of the nature of the developed crude oil resources in the U.S. indicates that the majority of the crude oil being produced is above 35 degrees API gravity and exists in reservoirs deeper than 4,000 ft. The combination of hydrostatic pressure on these oil reservoirs, the natural gas usually present in the crude oil in proportion to this pressure, the reservoir temperatures typically found, and the distribution of molecular sizes and types in the crude oil corresponding to the API gravity results in the fact that, in the majority of cases, the in-place crude oil viscosity was originally no more than twice that of water. A large proportion of these oil reservoirs have undergone pressure decline, gas evolution and consequent increase in crude oil viscosity. However, an appreciable proportion are still at such a pressure and proportion are still at such a pressure and temperature that miscibility can be readily attained with miscible drive agents such as propane or carbon dioxide, and the viscosity of the crude oil is such that the mobility of these miscible drive agents is no more than 50 time s that of the crude oil. Under these circumstances, a possible candidate situation for the miscible-drive type of process may exist. process may exist. Supposing that such a situation is under consideration, the next question is: what specific miscible drive process, and how should it be designed to operate? In some cases, the answer is clear: when the reservoir has a high degree of vertical communication (high permeability and continuity of the permeable, oil-bearing pore space in the vertical direction), then a gravity-stabilized miscible flood is the preferred mode of operation; and the particular drive agent or agents can be chosen on the basis of miscibility requirements, availability and cost. SPEJ P. 143


2013 ◽  
Vol 334-335 ◽  
pp. 83-88
Author(s):  
A. de Lima Cunha ◽  
Severino Rodrigues de Farias Neto ◽  
Antônio Gilson Barbosa de Lima ◽  
E. Santos Barbosa

In this work we carried out a numerical study of the heavy oil recovery process in oil reservoir through water injection. We performed transient tridimensional numerical simulations, considering an isothermal process, with a variation in the position of water injection section (interior and surface) in the reservoir, using the ANSYS CFX 11 commercial package and evaluated its effects on the recovery factor of oil. The numerical results showed that varying the flow rate of water injection from 0.10 to 0.25 kg/s there was an increase in the flow of water and oil produced in 193% and 28%, respectively, and the recovery factor in 16.7%


Sign in / Sign up

Export Citation Format

Share Document