Prediction of Recovery in Unstable Miscible Flooding

1972 ◽  
Vol 12 (02) ◽  
pp. 143-155 ◽  
Author(s):  
E.L. Claridge

Abstract A new correlation bas been developed for estimating oil recovery in unstable miscible five-spot pattern floods. It combines existing methods of predicting areal coverage and linear displacement efficiency and was used to calculate oil recovery for a series of assumed slug sizes in a live-spot CO2 slug-waterflood pilot test. The economic optimum slug size varies with CO2 cost; at anticipated CO2 costs the pilot would generate an attractive profit if performance is as predicted Introduction Selection of good field prospects for application of oil recovery processes other than waterflooding is often difficult. The principal reason is that other proposed displacing agents are far more costly proposed displacing agents are far more costly than water and usually sweep a lesser fraction of the volume of an oil reservoir (while displacing oil more efficiently from this fraction). Such agents must be used in limited amounts as compared with water; and this amount must achieve an appreciable additional oil recovery above waterflooding recovery. For these reasons, there is in general much less economic margin for engineering error in processes other than waterflooding. The general characteristics of the various types of supplemental recovery processes are well known, and adequate choices can be made of processes to be considered in more detail with respect to a given field. Comparative estimates must then be made of process performance and costs in order to narrow the choice. A much more detailed, definitive process-and-economic evaluation is eventually process-and-economic evaluation is eventually required of the chosen process before an executive decision can be made to commit large amounts of money to such projects. It is in the area between first choice and final engineering evaluation that this work applies. A areal cusping and vertical coning into producing wells. These effects can be seated by existing "desk-drawer" correlation which can confirm or deny the engineer's surmise that he has an appropriate match of recovery process and oil reservoir characteristics is of considerable value in determining when to undertake the costly and often manpower-consuming task of a definitive process-and-economic evaluation. process-and-economic evaluation. An examination of the nature of the developed crude oil resources in the U.S. indicates that the majority of the crude oil being produced is above 35 degrees API gravity and exists in reservoirs deeper than 4,000 ft. The combination of hydrostatic pressure on these oil reservoirs, the natural gas usually present in the crude oil in proportion to this pressure, the reservoir temperatures typically found, and the distribution of molecular sizes and types in the crude oil corresponding to the API gravity results in the fact that, in the majority of cases, the in-place crude oil viscosity was originally no more than twice that of water. A large proportion of these oil reservoirs have undergone pressure decline, gas evolution and consequent increase in crude oil viscosity. However, an appreciable proportion are still at such a pressure and proportion are still at such a pressure and temperature that miscibility can be readily attained with miscible drive agents such as propane or carbon dioxide, and the viscosity of the crude oil is such that the mobility of these miscible drive agents is no more than 50 time s that of the crude oil. Under these circumstances, a possible candidate situation for the miscible-drive type of process may exist. process may exist. Supposing that such a situation is under consideration, the next question is: what specific miscible drive process, and how should it be designed to operate? In some cases, the answer is clear: when the reservoir has a high degree of vertical communication (high permeability and continuity of the permeable, oil-bearing pore space in the vertical direction), then a gravity-stabilized miscible flood is the preferred mode of operation; and the particular drive agent or agents can be chosen on the basis of miscibility requirements, availability and cost. SPEJ P. 143

2014 ◽  
Author(s):  
N.. Rambaran ◽  
S.. Maharaj ◽  
R.. Hosein

Abstract In Microbial Enhanced Oil Recovery (MEOR) oil mobility and oil recovery is increased by growing and reproducing microbes (bacteria) in oil reservoirs. The oil reservoir is either innoculated with a proprietry bacteria and then fed to grow or indigeneous microbes present are fed by the injection of a suitable nutrient identified from labotatory experiments. The metabolic by-products produced by these microorganisms causes a reduction in oil viscosity and interfacial tension and an increase in oil mobility. Although MEOR is not popular, the open literature has shown this to be a low cost mechanism that can be implemented with waterflood projects to increase the recovery of residual oil by another 1-5 %. In this study an oil sample from an oil reservoir in the South of Trinidad was selected and the indigenous bacteria present was identified to be mainly of the Bacillus species. A quantification of this indigenous bacteria by plate counts showed that the aerobic colony forming units (CFU) was about 1.5×106 CFU/ml whereas the observed anaerobic plate counts was about 9.0×102 CFU/ml. Growth of the indigenous bacteria was stimulated by innoculating the oil sample with five different nutrient formulations for a period of three weeks so as to select the most suitable nutrient. However, the growth in bacteria was too numerous to count even after one week. Experimental measurements showed that the sample innoculated with the nutrient broth formulation had the greatest change in oil properties. The reduction in oil viscosity was 49 % and the reduction in interficial tension was 17 %. The results from this study can be included in waterfloood simulation studies for suitable oil reservoirs in Trinidad to determine the added increase in oil mobility and oil recovery from a combination of waterflood and MEOR.


2021 ◽  
Vol 143 (7) ◽  
Author(s):  
Ali Alarbah ◽  
Ezeddin Shirif ◽  
Na Jia ◽  
Hamdi Bumraiwha

Abstract Chemical-assisted enhanced oil recovery (EOR) has recently received a great deal of attention as a means of improving the efficiency of oil recovery processes. Producing heavy oil is technically difficult due to its high viscosity and high asphaltene content; therefore, novel recovery techniques are frequently tested and developed. This study contributes to general progress in this area by synthesizing an acidic Ni-Mo-based liquid catalyst (LC) and employing it to improve heavy oil recovery from sand-pack columns for the first time. To understand the mechanisms responsible for improved recovery, the effect of the LC on oil viscosity, density, interfacial tension (IFT), and saturates, aromatics, resin, and asphaltenes (SARA) were assessed. The results show that heavy oil treated with an acidic Ni-Mo-based LC has reduced viscosity and density and that the IFT of oil–water decreased by 7.69 mN/m, from 24.80 mN/m to 17.11 mN/m. These results are specific to the LC employed. The results also indicate that the presence of the LC partially upgrades the structure and group composition of the heavy oil, and sand-pack flooding results show that the LC increased the heavy oil recovery factor by 60.50% of the original oil in place (OOIP). Together, these findings demonstrate that acidic Ni-Mo-based LCs are an effective form of chemical-enhanced EOR and should be considered for wider testing and/or commercial use.


2021 ◽  
Author(s):  
Jasmine Shivani Medina ◽  
Iomi Dhanielle Medina ◽  
Gao Zhang

Abstract The phenomenon of higher than expected production rates and recovery factors in heavy oil reservoirs captured the term "foamy oil," by researchers. This is mainly due to the bubble filled chocolate mousse appearance found at wellheads where this phenomenon occurs. Foamy oil flow is barely understood up to this day. Understanding why this unusual occurrence exists can aid in the transfer of principles to low recovery heavy oil reservoirs globally. This study focused mainly on how varying the viscosity and temperature via pressure depletion lab tests affected the performance of foamy oil production. Six different lab-scaled experiments were conducted, four with varying temperatures and two with varying viscosities. All experiments were conducted using lab-scaled sand pack pressure depletion tests with the same initial gas oil ratio (GOR). The first series of experiments with varying temperatures showed that the oil recovery was inversely proportional to elevated temperatures, however there was a directly proportional relationship between gas recovery and elevation in temperature. A unique observation was also made, during late-stage production, foamy oil recovery reappeared with temperatures in the 45-55°C range. With respect to the viscosities, a non-linear relationship existed, however there was an optimal region in which the live-oil viscosity and foamy oil production seem to be harmonious.


SPE Journal ◽  
2019 ◽  
Vol 24 (02) ◽  
pp. 413-430
Author(s):  
Zhanxi Pang ◽  
Lei Wang ◽  
Zhengbin Wu ◽  
Xue Wang

Summary Steam-assisted gravity drainage (SAGD) and steam and gas push (SAGP) are used commercially to recover bitumen from oil sands, but for thin heavy-oil reservoirs, the recovery is lower because of larger heat losses through caprock and poorer oil mobility under reservoir conditions. A new enhanced-oil-recovery (EOR) method, expanding-solvent SAGP (ES-SAGP), is introduced to develop thin heavy-oil reservoirs. In ES-SAGP, noncondensate gas and vaporizable solvent are injected with steam into the steam chamber during SAGD. We used a 3D physical simulation scale to research the effectiveness of ES-SAGP and to analyze the propagation mechanisms of the steam chamber during ES-SAGP. Under the same experimental conditions, we conducted a contrast analysis between SAGP and ES-SAGP to study the expanding characteristics of the steam chamber, the sweep efficiency of the steam chamber, and the ultimate oil recovery. The experimental results show that the steam chamber gradually becomes an ellipse shape during SAGP. However, during ES-SAGP, noncondensate gas and a vaporizable solvent gather at the reservoir top to decrease heat losses, and oil viscosity near the condensate layer of the steam chamber is largely decreased by hot steam and by solvent, making the boundary of the steam chamber vertical and gradually a similar, rectangular shape. As in SAGD, during ES-SAGP, the expansion mechanism of the steam chamber can be divided into three stages: the ascent stage, the horizontal-expansion stage, and the descent stage. In the ascent stage, the time needed is shorter during ES-SAGP than during SAGP. However, the other two stages take more time during nitrogen, solvent, and steam injection to enlarge the cross-sectional area of the bottom of the steam chamber. For the conditions in our experiments, when the instantaneous oil/steam ratio is lower than 0.1, the corresponding oil recovery is 51.11%, which is 7.04% higher than in SAGP. Therefore, during ES-SAGP, not only is the volume of the steam chamber sharply enlarged, but the sweep efficiency and the ultimate oil recovery are also remarkably improved.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1975 ◽  
Author(s):  
Junrong Liu ◽  
Lu Sun ◽  
Zunzhao Li ◽  
Xingru Wu

CO2 flooding is an important method for improving oil recovery for reservoirs with low permeability. Even though CO2 could be miscible with oil in regions nearby injection wells, the miscibility could be lost in deep reservoirs because of low pressure and the dispersion effect. Reducing the CO2–oil miscibility pressure can enlarge the miscible zone, particularly when the reservoir pressure is less than the needed minimum miscible pressure (MMP). Furthermore, adding intermediate hydrocarbons in the CO2–oil system can also lower the interfacial tension (IFT). In this study, we used dead crude oil from the H Block in the X oilfield to study the IFT and the MMP changes with different hydrocarbon agents. The hydrocarbon agents, including alkanes, alcohols, oil-soluble surfactants, and petroleum ethers, were mixed with the crude oil samples from the H Block, and their performances on reducing CO2–oil IFT and CO2–oil MMP were determined. Experimental results show that the CO2–oil MMP could be reduced by 6.19 MPa or 12.17% with petroleum ether in the boiling range of 30–60 °C. The effects of mass concentration of hydrocarbon agents on CO2–oil IFT and crude oil viscosity indicate that the petroleum ether in the boiling range of 30–60 °C with a mass concentration of 0.5% would be the best hydrocarbon agent for implementing CO2 miscible flooding in the H Block.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2667 ◽  
Author(s):  
Wenxiang Chen ◽  
Zubo Zhang ◽  
Qingjie Liu ◽  
Xu Chen ◽  
Prince Opoku Appau ◽  
...  

Oil production by natural energy of the reservoir is usually the first choice for oil reservoir development. Conversely, to effectively develop tight oil reservoir is challenging due to its ultra-low formation permeability. A novel platform for experimental investigation of oil recovery from tight sandstone oil reservoirs by pressure depletion has been proposed in this paper. A series of experiments were conducted to evaluate the effects of pressure depletion degree, pressure depletion rate, reservoir temperature, overburden pressure, formation pressure coefficient and crude oil properties on oil recovery by reservoir pressure depletion. In addition, the characteristics of pressure propagation during the reservoir depletion process were monitored and studied. The experimental results showed that oil recovery factor positively correlated with pressure depletion degree when reservoir pressure was above the bubble point pressure. Moreover, equal pressure depletion degree led to the same oil recovery factor regardless of different pressure depletion rate. However, it was noticed that faster pressure drop resulted in a higher oil recovery rate. For oil reservoir without dissolved gas (dead oil), oil recovery was 2–3% due to the limited reservoir natural energy. In contrast, depletion from live oil reservoir resulted in an increased recovery rate ranging from 11% to 18% due to the presence of dissolved gas. This is attributed to the fact that when reservoir pressure drops below the bubble point pressure, the dissolved gas expands and pushes the oil out of the rock pore spaces which significantly improves the oil recovery. From the pressure propagation curve, the reason for improved oil recovery is that when the reservoir pressure is lower than the bubble point pressure, the dissolved gas constantly separates and provides additional pressure gradient to displace oil. The present study will help engineers to have a better understanding of the drive mechanisms and influencing factors that affect development of tight oil reservoirs, especially for predicting oil recovery by reservoir pressure depletion.


2012 ◽  
Vol 594-597 ◽  
pp. 2451-2454
Author(s):  
Feng Lan Zhao ◽  
Ji Rui Hou ◽  
Shi Jun Huang

CO2is inclined to dissolve in crude oil in the reservoir condition and accordingly bring the changes in the crude oil composition, which will induce asphaltene deposition and following formation damage. In this paper, core flooding device is applied to study the effect of asphaltene deposition on flooding efficiency. From the flooding results, dissolution of CO2into oil leads to recovery increase because of crude oil viscosity reduction. But precipitated asphaltene particles may plug the pores and throats, which will make the flooding effects worse. Under the same experimental condition and with equivalent crude oil viscosity, the recovery of oil with higher proportion of precipitated asphaltene was relatively lower during the CO2flooding, so the asphltene precipitation would affect CO2displacement efficiSubscript textency and total oil recovery to some extent. Combination of static diffusion and dynamic oil flooding would provide basic parameters for further study of the CO2flooding mechanism and theoretical evidence for design of CO2flooding programs and forecasting of asphaltene deposition.


1983 ◽  
Vol 23 (06) ◽  
pp. 937-945 ◽  
Author(s):  
Ching H. Wu ◽  
Robert B. Elder

Abstract Steam distillation can occur in reservoirs during steam injection and in-situ combustion processes. To estimate the amount of vaporized oil caused by steam distillation, we established correlations of steam distillation yields with the basic crude oil properties. These correlations were based on steam distillation tests performed on 16 crude oils from various pans of the U.S. The gravity of oils varied from 12 to 40 deg. API [0.99 to 0.83 g/cm3]. The viscosity of oil ranged from 5 to 4,085 cSt [5 to 4085 mm /s] at 100 deg. F [38 deg. C]. The steam distillations were performed at a saturated steam pressure of 220 psia [1.5 MPa]. One oil sample was used in experiments to investigate the effect of steam pressure (220 to 500 psia [1.5 to 3.4 MPa]) on the steam distillation yield. The experiments were carried out to a steam distillation factor (Vw/Voi) of 20, with the factor defined as the cumulative volume of condensed steam used in distillation, Vw, divided by the initial volume of oil, Voi. At a steam distillation factor of 20, the distillation yields ranged from 13 to 57% of the initial oil volume. Several basic crude oil properties can be used to predict steam distillation yields reasonably well. A correlation using oil viscosity in centistokes at 100 deg. F [38 deg. C] can be used to predict the steam distillation yield within a standard error of 4.3 %. The API gravity can be used to estimate wields within 5.6%. A gas chromatographic analysis was made for each crude oil to obtain the component boiling points (simulated distillation temperatures). A correlation parameter was selected from the simulated distillation results that can be used to estimate the steam distillation yields within 4.5%. Introduction Steamflooding has been used commercially to recover heavy oils for several decades. Although it is considered a heavy-oil recovery process, it has been demonstrated to be an effective and commercially feasible process for recovering light oils. To enhance the effectiveness of the oil recovery process, it is important to fully understand and utilize the basic steamflooding mechanisms. Willman et al. investigated the mechanisms of steamflooding. They concluded that oil viscosity reduction, oil volume expansion, and steam distillation are the major mechanisms for oil recovery. Since then, more research has been done on all phases of steam injection. However, steam distillation and its ramifications on recovery have not been quantified fully because of lack of experimental data. Steam distillation can lower the boiling point of a water/oil mixture below the boiling point of the individual components. SPEJ P. 937^


2019 ◽  
Vol 10 (3) ◽  
pp. 919-931 ◽  
Author(s):  
Sherif Fakher ◽  
Mohamed Ahdaya ◽  
Mukhtar Elturki ◽  
Abdulmohsin Imqam

Abstract Carbon dioxide (CO2) injection is one of the most applied enhanced oil recovery methods in the hydrocarbon industry, since it has the potential to increase oil recovery significantly and can help reduce greenhouse gases through carbon storage in hydrocarbon reservoirs. Carbon dioxide injection has a severe drawback, however, since it induces asphaltene precipitation by disrupting the asphaltene stability in crude oil that bears even the slightest asphaltene concentration. This can result in severe operational problems, such as reservoir pore plugging and wellbore plugging. This research investigates some of the main factors that impact asphaltene stability in crude oil during CO2 injection. Initially, asphaltene precipitation, flocculation, and deposition were tested using visual tests without CO2 in order to evaluate the effect of oil viscosity and temperature on asphaltene stability and content in the crude oil. The results obtained from the visualization experiments were correlated to the Yen–Mullins asphaltene model and were used to select the proper chemical to alter the oil’s viscosity without strongly affecting asphaltene stability. After performing the visual asphaltene tests, a specially designed filtration vessel was used to perform the oil filtration experiments using filter membranes with a micron and nanometer pore size. The effect of varying CO2 injection pressure, oil viscosity, filter membrane pore size, and filter membrane thickness on asphaltene stability in crude oil was investigated. The results were then correlated with the Yen–Mullins asphaltene model to characterize the asphaltene size within the oil as well. Results showed that as the oil viscosity increased, the asphaltene concentration in the oil also increased. Also, the asphaltene concentration and filter cake thickness increased with the decrease in filter membrane pore size, since the asphaltene particles either plugged up the smaller pores, or the asphaltene nanoaggregates were larger than the pore sizes, and thus the majority of them could not pass. This research studies asphaltene instability in crude oil during CO2 injection in different pore sizes, and correlates the results to the principle of the Yen–Mullins model for asphaltenes. The results from this research can help emphasize the factors that will impact asphaltene stability during CO2 injection in different pore sizes in order to help reduce asphaltene-related problems that arise during CO2 injection in hydrocarbon reservoirs.


Sign in / Sign up

Export Citation Format

Share Document