scholarly journals STUDY OF THE INFLUENCE OF CUTTING FLUID AMOUNT IN STEEL TURNING OF AISI 52100

Author(s):  
Ítalo de Abreu Gonçalves ◽  
Leonardo Leite ◽  
Tarcísio G. De Brito ◽  
Emerson J. De Paiva ◽  
Carlos H. De Oliveira ◽  
...  

The steel turning AISI 52100 has been gaining prominence in industry in recent years, as it allows machined parts to have better quality without the need for furthers processes. However, to ensure the final product quality, it is important that the turning for machining procedure is well planned and prepared, so that the cutting tools have their wear minimized in the process, while putting good productivity rates and zero occurrences of reworked parts. Thus, this article will study the quality of the machined surface in the turning process using interchangeable PCBN inserts. The aim is to identify the optimal combination of the input parameters that are cutting speed (Vc), feed (f) and machining depth (ap). The response measured is the roughness parameter Ra, under the influence of cutting fluid and tool wear.

2020 ◽  
Vol 10 (5) ◽  
pp. 1788
Author(s):  
Michal Šajgalík ◽  
Milena Kušnerová ◽  
Marta Harničárová ◽  
Jan Valíček ◽  
Andrej Czán ◽  
...  

Current demands on quality are the engine of searching for new progressive materials which should ensure enough durability in real conditions. Due to their mechanical properties, however, they cannot be applied to conventional machining methods. In respect to productivity, one of the methods is the finding of such machining technologies which allow achieving an acceptable lifetime of cutting tools with an acceptable quality of a machined surface. One of the mentioned technologies is trochoidal milling. Based on our previous research, where the effect of changing cutting conditions (cutting speed, feed per tooth, depth of cut) on tool lifetime was analysed, next, we continued with research on the influences of trochoid parameters on total machining force (step and engagement angle) as parameters adjustable in the CAM (computer-aided machining) system. The main contribution of this research was to create a mathematical-statistical model for the prediction of cutting force. This model allows setting up the trochoid parameters to optimize force load and potentially extend the lifetime of the cutting tool.


2014 ◽  
Vol 657 ◽  
pp. 63-67
Author(s):  
Tatiana Ivchenko ◽  
Vadim Boguslavskiy ◽  
Irina Petryaeva ◽  
Dmitriy Mihaylov

The Method of Estimation of Possibilities of the Machining Productivity Rise Taking into Account the Action of Cutting Fluid (TCF) and Coated Carbide Cutting Tools (CCT) for Rough and Fin-Ish Turning Corrosion-Proof, Heat Resisting and Stainless Steels and Alloys is Perfected. the Factor of Machining Productivity Rise at the Expense of Use TCF and CCT is Set. it is Executed Theoretical and Experimental Researches of Influence of the Cutting Regimes on the Cutting Temperature and the Ma-Chined Surface Roughness at Turning of Different Hard-Processing Steels and Alloys. Dependences of the Cutting Temperature and the Machined Surface Roughness on Cutting Speed, Feed and Depth Taking into Account the Action of TCF and CCT are Set. the Factors of Decline of the Machined Surface Roughness and the Cutting Temperature are Certain at the Use of TCF with Different Cooling and Lubri-Cant Properties. the Factors of Machining Productivity Rise are Certain under Various Conditions of the Rough and Finish Turning Different Corrosion - Proof, Heat Resisting and High - Resistance Steels and Alloys Depending on the Factor of the Cutting Temperature Decline and Factor of the Tool Life Rise. the Set Factor of Machining Productivity Rise Allows Estimating Efficiency of the Use of Various TCF and CCT for Different Hard-Processing Materials.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3432
Author(s):  
Edwin Gevorkyan ◽  
Mirosław Rucki ◽  
Tadeusz Sałaciński ◽  
Zbigniew Siemiątkowski ◽  
Volodymyr Nerubatskyi ◽  
...  

The paper presents results of investigations on the binderless nanostructured tungsten carbide (WC) cutting tools fabrication and performance. The scientific novelty includes the description of some regularities of the powder consolidation under electric current and the subsequent possibility to utilize them for practical use in the fabrication of cutting tools. The sintering process of WC nanopowder was performed with the electroconsolidation method, which is a modification of spark plasma sintering (SPS). Its advantages include low temperatures and short sintering time which allows retaining nanosize grains of ca. 70 nm, close to the original particle size of the starting powder. In respect to the application of the cutting tools, pure WC nanostructure resulted in a smaller cutting edge radius providing a higher quality of TiC/Fe machined surface. In the range of cutting speeds, vc = 15–40 m/min the durability of the inserts was 75% of that achieved by cubic boron nitride ones, and more than two times better than that of WC-Co cutting tools. In additional tests of machining 13CrMo4 material at an elevated cutting speed of vc = 100 m/min, binderless nWC inserts worked almost three times longer than WC-Co composites.


2015 ◽  
Vol 3 (2) ◽  
Author(s):  
Syed Adnan Ahmed ◽  
Jeong Hoon Ko ◽  
Sathyan Subbiah ◽  
Swee Hock Yeo

This paper describes a new method of microtexture generation in precision machining through self-excited vibrations of a diamond cutting tool. Conventionally, a cutting tool vibration or chatter is detrimental to the quality of the machined surface. In this study, an attempt is made to use the cutting tool's self-excited vibration during a cutting beneficially to generate microtextures. This approach is named as “controlled chatter machining (CCM).” Modal analysis is first performed to study the dynamic behavior of the cutting tool. Turning processes are then conducted by varying the tool holder length as a means to control vibration. The experimental results indicate that the self-excited diamond cutting tool can generate microtextures of various shapes, which depend on the cutting tool shank, cutting speed, feed, and cutting depth. The potential application of this proposed technique is to create microtextures in microchannels and microcavities to be used in mass and heat transfer applications.


2021 ◽  
pp. 200-206
Author(s):  
I.N. Sedinin ◽  
V.F. Makarov

It is considered the complex of operations of the technological process for the heat treatment of steel 95X18-Sh, as a result of which the material of the samples increases the hardness to 59...61 HRC, and also improves the physical and mechanical properties. A full-scale full factorial experiment of face milling of samples was carried out using the method of mathematical planning. In the experiments, a high-precision machine and a carbide cutting tool were used. To calculate the values of the roughness function, the following are taken as independent variables: cutting speed, feed per tooth and depth of cut. In order to determine the coefficients of the linear equation, a central compositional orthogonal plan of the second order for three factors was used. A matrix of levels of variation of independent variable factors and a matrix of experiment planning were compiled. A regression analysis of the obtained experimental statistical data was carried out using the Microsoft Excel, Statistica and Wolfram Alpha programs. As a result of the calculations, a mathematical model of the roughness of the machined surface and optimal cutting conditions were determined.


Author(s):  
Mitsuru Hasegawa ◽  
Tatsuya Sugihara

Abstract In cutting of Ti-6Al-4V alloy, the cutting speed is limited since a high cutting temperature leads to severe tool wear and short tool life, resulting in poor production efficiency. On the other hand, some recent literature has reported that various beneficial effects can be provided by forming micro-textures on the tool surface in the metal cutting process. In this study, in order to achieve high-performance machining of Ti-6Al-4V, we first investigated the mechanism of the tool failure process for a cemented carbide cutting tool in high-speed turning of Ti-6Al-4V. Based on the results, cutting tools with micro textured surfaces were developed under the consideration of a cutting fluid action. A series of experiments showed that the textured rake face successfully decreases the cutting temperature, resulting in a significant suppression of both crater wear and flank wear. In addition, the temperature zone where the texture tool is effective in terms of the tool life in the Ti-6Al-4V cutting was discussed.


2015 ◽  
Vol 809-810 ◽  
pp. 93-98
Author(s):  
Ionuţ Urzică ◽  
Ciprian Râznic ◽  
Mihai Apostol ◽  
Corina Mihaela Pavăl ◽  
Mihai Boca ◽  
...  

Frequently, on the drawings of mechanical parts, only indications concerning the surface roughness parameter Ra and, relatively rarely, the surface roughness parameter Rz are included. However, the study of the machined surface roughness highlights the necessity to use yet other surface roughness parameters, in order to have a clearer image on the state of the machined surface. Some other surface roughness parameters possible to be used and presenting importance, without the parameters Ra and Rz, were highlighted. One took into consideration the possibility of measuring parameters Rsk and Rmr by means of the available surface roughness testers. Experimental researches of turning by applying the method of full factorial experiment were developed. As input factors in turning process, the cutting speed, the feed rate and the tool nose radius were used. The experimental results were mathematically processed, being determined empirical mathematical models that highlight the influence of certain input factors of turning process on the values of some surface roughness parameters characterized by a more restricted use


2014 ◽  
Vol 1077 ◽  
pp. 61-65
Author(s):  
Pei Yan ◽  
Xiang Su ◽  
Gang Wang ◽  
Yi Ming Rong

As the development of new materials and high speed machining, cutting fluid becomes more and more important because of its functions of cooling, lubrication, corrosion protection and cleaning. The main purposes of cutting fluid are decreasing temperature, reducing friction, extending tool life and improving machining efficiency. In precision machining, high machined surface integrity is the most important. In this paper, a preliminary experimental study on effect of two different cutting fluids on milled surface quality of iron-base superalloy was taken. The surface morphology, roughness, micro hardness and residual stress of the machined surface were investigated. The results showed that the material properties and geometric characteristics of the machined surface were significantly affected by cutting fluid conditions. The effect of cutting fluid on machined surface quality and service performance will become an important research direction. This paper also suggests the main contents of the further research on effect of cutting fluids on machined surface.


Tribologia ◽  
2019 ◽  
Vol 286 (4) ◽  
pp. 53-61
Author(s):  
Monika MADEJ ◽  
Joanna KOWALCZYK ◽  
Dariusz OZIMINA ◽  
Łukasz NOWAKOWSKI ◽  
Andrzej KULCZYCKI

The paper presents the results of tests of the wear of cutting tools following the process of facing with lubrication with cutting fluids. The tests were carried out on a CNC lathe with the use of two cutting fluids: one based on mineral oil and the other containing zinc aspartate. After machining, the tool wear was measured using a stereoscopic inspection microscope. Observation of surface morphology and identification of elements was performed using a scanning electron microscope with a EDS analyser. Measurements of the geometric structure of the surface of turned elements were performed using an optical profilometer. The non-toxic coolant with zinc aspartate used in the tests resulted in the formation of surface layers enriched with zinc compounds, which directly translated into the improvement of technological quality of the workpiece.


2015 ◽  
Vol 15 (3) ◽  
pp. 309-318 ◽  
Author(s):  
Suha K. Shihab ◽  
Zahid A. Khan ◽  
Arshad Noor Siddiquee

AbstractEffect of cryogenic hard turning parameters (cutting speed, feed rate, and depth of cut) on surface roughness (Ra) and micro-hardness (µH) that constitute surface integrity (SI) of the machined surface of alloy steel AISI 52100 is investigated. Multilayer hard surface coated (TiN/TiCN/Al2O3/TiN) insert on CNC lathe is used for turning under different cutting parameters settings. RSM based Central composite design (CCD) of experiment is used to collect data for Ra and µH. Validity of assumptions related to the collected data is checked through several diagnostic tests. The analysis of variance (ANOVA) is used to determine main and interaction effects. Relationship between the variables is established using quadratic regression model. Both Ra and µH are influenced principally by the cutting speed and the feed rate. Model equations are found to predict accurate values of Ra and µH. Finally, desirability function approach for multiple response optimization is used to produce optimum SI.


Sign in / Sign up

Export Citation Format

Share Document