scholarly journals MODIFIED EFFECTIVE AREA APPROACH TO ESTIMATE MOTORCYCLE EQUIVALENT UNITS IN AHMEDABAD CITY

Author(s):  
Keval Vyas ◽  
Jeel Anovadia ◽  
Ashutosh Patel

This paper presents a methodology for estimation of Motorcycle Equivalent Units (MEU) in mixed traffic flow for motorcycle dominated traffic with increased accuracy by considering dynamic characteristics of subject vehicles, like speed and effective area. Besides, this increased accuracy is the result of the inclusion of speed of adjacent motorcycles in the form of speed ratios to estimate the effective area required by the subject vehicle at a particular speed. The effective area for each sample is computed with consideration of the effective dimensions and speed of that subject vehicle and its adjacent motorcycles on both sides in the proposed methodology. Two mid-block sections of urban roads in Ahmedabad city were selected for field data collection by videography method in this case study. The collected field data was analysed through Speed Estimation from Video Data (SEV) software. A table of classified speed ratios is also presented to derive an idea regarding the magnitude of change in lateral clearances of subject vehicles. The MEU values obtained for cars, motorcycles, rickshaws, buses, Light Commercial Vehicles (LCV), and bicycles were 3.02, 1.00, 1.84, 9.82, 6.2, and 1.9 respectively. Further, the proposed model was compared with a previously developed model to justify the increase in accuracy and to observe the variations in MEUs. The values estimated can be used to establish speed-flow relations, measure roadway capacity in urban roads, analyse the level of service in order to plan suitable traffic control and regulatory measures.

2008 ◽  
Vol 4 (3) ◽  
pp. 59-83
Author(s):  
Bernt Schnettler

The use of audiovisual recording devices is changing the practice of qualitative research. Extensive corpus of data can be generated in (shortterm) focussed fieldwork. Nevertheless, methods to analyse video data are still in an experimental stage. This article explores the benefits and limitations of applying sociolinguistic genre analysis to audio-visual data. This is illustrated with a case study, based on the videotaped »deep-trance vision« of a New Religious Movement’s spiritual leader, which is one the most famous contemporary religious visionaries in Germany. The analysis aims to reconstruct the construction of this religious experience of transcendence from the perspective of its followers. We will examine three different levels of communication (a) the inner context, exploring the textual, gestural, mimical and prosodic aspects, (b) the intermediate level where the focus lies on the setting and decorum, and finally (c) the outer context, focussing on the social embedding of this form of »transcendent« communication and its filmic presentation. The article closes with a reflection on the need to combine hermeneutic analysis of case studies based on textual analysis with ethnographic field data and observation to contextualise its interpretation.


1998 ◽  
Vol 37 (1) ◽  
pp. 155-162
Author(s):  
Flemming Schlütter ◽  
Kjeld Schaarup-Jensen

Increased knowledge of the processes which govern the transport of solids in sewers is necessary in order to develop more reliable and applicable sediment transport models for sewer systems. Proper validation of these are essential. For that purpose thorough field measurements are imperative. This paper renders initial results obtained in an ongoing case study of a Danish combined sewer system in Frejlev, a small town southwest of Aalborg, Denmark. Field data are presented concerning estimation of the sediment transport during dry weather. Finally, considerations on how to approach numerical modelling is made based on numerical simulations using MOUSE TRAP (DHI 1993).


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Tinggui Chen ◽  
Shiwen Wu ◽  
Jianjun Yang ◽  
Guodong Cong ◽  
Gongfa Li

It is common that many roads in disaster areas are damaged and obstructed after sudden-onset disasters. The phenomenon often comes with escalated traffic deterioration that raises the time and cost of emergency supply scheduling. Fortunately, repairing road network will shorten the time of in-transit distribution. In this paper, according to the characteristics of emergency supplies distribution, an emergency supply scheduling model based on multiple warehouses and stricken locations is constructed to deal with the failure of part of road networks in the early postdisaster phase. The detailed process is as follows. When part of the road networks fail, we firstly determine whether to repair the damaged road networks, and then a model of reliable emergency supply scheduling based on bi-level programming is proposed. Subsequently, an improved artificial bee colony algorithm is presented to solve the problem mentioned above. Finally, through a case study, the effectiveness and efficiency of the proposed model and algorithm are verified.


2021 ◽  
Vol 13 (11) ◽  
pp. 6109
Author(s):  
Joanne Lee Picknoll ◽  
Pieter Poot ◽  
Michael Renton

Habitat loss has reduced the available resources for apiarists and is a key driver of poor colony health, colony loss, and reduced honey yields. The biggest challenge for apiarists in the future will be meeting increasing demands for pollination services, honey, and other bee products with limited resources. Targeted landscape restoration focusing on high-value or high-yielding forage could ensure adequate floral resources are available to sustain the growing industry. Tools are currently needed to evaluate the likely productivity of potential sites for restoration and inform decisions about plant selections and arrangements and hive stocking rates, movements, and placements. We propose a new approach for designing sites for apiculture, centred on a model of honey production that predicts how changes to plant and hive decisions affect the resource supply, potential for bees to collect resources, consumption of resources by the colonies, and subsequently, amount of honey that may be produced. The proposed model is discussed with reference to existing models, and data input requirements are discussed with reference to an Australian case study area. We conclude that no existing model exactly meets the requirements of our proposed approach, but components of several existing models could be combined to achieve these needs.


Author(s):  
Shorya Awtar ◽  
Edip Sevincer

Over-constraint is an important concern in mechanism design because it can lead to a loss in desired mobility. In distributed-compliance flexure mechanisms, this problem is alleviated due to the phenomenon of elastic averaging, thus enabling performance-enhancing geometric arrangements that are otherwise unrealizable. The principle of elastic averaging is illustrated in this paper by means of a multi-beam parallelogram flexure mechanism. In a lumped-compliance configuration, this mechanism is prone to over-constraint in the presence of nominal manufacturing and assembly errors. However, with an increasing degree of distributed-compliance, the mechanism is shown to become more tolerant to such geometric imperfections. The nonlinear load-stiffening and elasto-kinematic effects in the constituent beams have an important role to play in the over-constraint and elastic averaging characteristics of this mechanism. Therefore, a parametric model that incorporates these nonlinearities is utilized in predicting the influence of a representative geometric imperfection on the primary motion stiffness of the mechanism. The proposed model utilizes a beam generalization so that varying degrees of distributed compliance are captured using a single geometric parameter.


2018 ◽  
Vol 17 (05) ◽  
pp. 1429-1467 ◽  
Author(s):  
Mohammad Amirkhan ◽  
Hosein Didehkhani ◽  
Kaveh Khalili-Damghani ◽  
Ashkan Hafezalkotob

The issue of efficiency analysis of network and multi-stage systems, as one of the most interesting fields in data envelopment analysis (DEA), has attracted much attention in recent years. A pure serial three-stage (PSTS) process is a specific kind of network in which all the outputs of the first stage are used as the only inputs in the second stage and in addition, all the outputs of the second stage are applied as the only inputs in the third stage. In this paper, a new three-stage DEA model is developed using the concept of three-player Nash bargaining game for PSTS processes. In this model, all of the stages cooperate together to improve the overall efficiency of main decision-making unit (DMU). In contrast to the centralized DEA models, the proposed model of this study provides a unique and fair decomposition of the overall efficiency among all three stages and eliminates probable confusion of centralized models for decomposing the overall efficiency score. Some theoretical aspects of proposed model, including convexity and compactness of feasible region, are discussed. Since the proposed bargaining model is a nonlinear mathematical programming, a heuristic linearization approach is also provided. A numerical example and a real-life case study in supply chain are provided to check the efficacy and applicability of the proposed model. The results of proposed model on both numerical example and real case study are compared with those of existing centralized DEA models in the literature. The comparison reveals the efficacy and suitability of proposed model while the pitfalls of centralized DEA model are also resolved. A comprehensive sensitivity analysis is also conducted on the breakdown point associated with each stage.


Author(s):  
Priyanka Peter ◽  
Prof. Vaibhav S. Umap

Aviation crashes all over the world have recently been on the high rise, stemming from negligence, mechanical faults, weather, ground control errors, pilot errors, taxing and maintenance crew errors as are probable reasons for such accidents. This case study models the probabilistic risk assessment of runway incursion data endeavored to determine the correlation in between the reported incursions that occurred at Nagpur airport between fiscal years 2005 and 2015 and the meteorological conditions, times of day, and presence of an air traffic control tower of Nagpur Airport. With runway incursions long-plaguing the safety of aviators, their passengers, and aviation refining the body of knowledge underpinning incursions coupled with ongoing prevention efforts aspire to diminish the annual incidence of incursions, increase safety, and save lives. In accordance with this mission, mining the Civil Organization (ICAO), and Federal Aviation Association (FAA) runway incursion databases and analyzing the resulting hours, and at airport with an air traffic control tower.


Sign in / Sign up

Export Citation Format

Share Document