scholarly journals AKTIVITAS ANTIBAKTERI EKSTRAK BIJI JERUK SIAM (Citrus reticulata) PADA BAKTERI Escherichia coli

2020 ◽  
Vol 7 (2) ◽  
pp. 289-295
Author(s):  
Mohammad Arfi Setiawan ◽  
Mita Dewi Retnoningrum ◽  
Febriyandhi Yahya ◽  
Resa Ragil Andika ◽  
Dyan Hatining Ayu Sudarni

Antibacterial Activity of Citrus seed (Citrus reticulata) Extract on Escherichia coli Indonesian agriculture provides a resource of medicinal plants whose potential needs to be explored in order to benefit society. One of them is the use of Siam orange seeds (Citrus reticulata) which has the potential for the production of antibacterial compounds. This study aims to test the antibacterial activity of the ethanol and n-hexane extract of orange seeds. The extract was obtained through maceration techniques using ethanol and n-hexane as solvents. The antibacterial activity test of orange seeds against Escherichia coli used the paper disc diffusion method with nutrient agar (NA) media. The concentration of orange seed extract for the determination of MIC (Minimum Inhibitory Concentration) was 0.5, 2, 8, 10, 20 mg mL-1. The results showed that the ethanol and n-hexane extract of orange seeds had antibacterial activity against E. coli. However, the ethanol extract had a higher antibacterial effect than the n-hexane orange seed extract. From the results of this study, it is hoped that the waste of orange seeds will provide beneficial contribution for pharmaceutical development. Pertanian Indonesia memiliki sumber tanaman obat yang perlu digali potensinya agar bermanfaat bagi masyarakat. Salah satunya pemanfaatan biji jeruk siam (Citrus reticulata) yang berpotensi menghasilkan senyawa antibakteri. Penelitian ini bertujuan untuk menguji aktivitas antibakteri ekstrak etanol dan n-heksana biji jeruk. Ekstrak diperoleh melalui teknik maserasi menggunakan pelarut etanol dan n-heksana. Uji aktivitas antibakteri biji jeruk terhadap Escherichia coli menggunakan metode difusi paper disc dengan media nutrient agar (NA). Konsentrasi ekstrak biji jeruk untuk penentuan MIC (Minimum Inhibitory Concentration) adalah 0,5, 2, 8, 10, 20 mg mL-1. Hasil penelitian menunjukkan bahwa ekstrak etanol dan n-heksana biji jeruk memiliki aktivitas antibakteri terhadap E. coli. Namun, ekstrak etanol memiliki efek antibakteri yang lebih tinggi dibandingkan ekstrak biji jeruk n-heksana. Dari hasil penelitian ini, limbah biji jeruk diharapkan dapat memberikan kontribusi bermanfaat bagi pengembangan farmasi.

Author(s):  
Phan Vu Hai ◽  
Hoang Thi Hong Van ◽  
Nguyen Van Chao ◽  
Nguyen Dinh Thuy Khuong ◽  
Thuong Thi Thanh Le ◽  
...  

The chives and ginger’s bulbs were extracted by ethanol 96%, 72%, 48% within 5, 10 and 15 days for each concentration (15, 30 and 45 days in total, respectively). The solidified extract then was used for antibacterial activity against E. coli and Salmonella spp. isolated from fecal of chickens with diarrhoea. The results showed that both ginger and chive, which socked and leached for greater than 30 days gave better antibacterial ability. Extracts diluted at concentrations of 5 µg/µl, 7.5 µg/µl and 10 µg/µl of ginger and chive bulbs are resistant to both bacteria. Compared with antibiotics, E. coli was resistant to amoxicillin, whereas Salmonella spp. was resistant to gentamicin and amoxicillin. The minimum inhibitory concentration (MIC) of chives extract (30 days) was 16-63 (31-125) mg/ml and ginger extract (30 days) was 16-80 (2-4) mg/ml; overall, the results indicated that both extract had bacteriostatic/bactericidal effects on E. coli and Salmonella spp.


2016 ◽  
Vol 5 (04) ◽  
pp. 4512
Author(s):  
Jackie K. Obey ◽  
Anthoney Swamy T* ◽  
Lasiti Timothy ◽  
Makani Rachel

The determination of the antibacterial activity (zone of inhibition) and minimum inhibitory concentration of medicinal plants a crucial step in drug development. In this study, the antibacterial activity and minimum inhibitory concentration of the ethanol extract of Myrsine africana were determined for Escherichia coli, Bacillus cereus, Staphylococcus epidermidis and Streptococcus pneumoniae. The zones of inhibition (mm±S.E) of 500mg/ml of M. africana ethanol extract were 22.00± 0.00 for E. coli,20.33 ±0.33 for B. cereus,25.00± 0.00 for S. epidermidis and 18. 17±0.17 for S. pneumoniae. The minimum inhibitory concentration(MIC) is the minimum dose required to inhibit growth a microorganism. Upon further double dilution of the 500mg/ml of M. africana extract, MIC was obtained for each organism. The MIC for E. coli, B. cereus, S. epidermidis and S. pneumoniae were 7.81mg/ml, 7.81mg/ml, 15.63mg/ml and 15.63mg/ml respectively. Crude extracts are considered active when they inhibit microorganisms with zones of inhibition of 8mm and above. Therefore, this study has shown that the ethanol extract of M. africana can control the growth of the four organisms tested.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Abdulkader Masri ◽  
Naveed Ahmed Khan ◽  
Muhammad Zarul Hanifah Md Zoqratt ◽  
Qasim Ayub ◽  
Ayaz Anwar ◽  
...  

Abstract Backgrounds Escherichia coli K1 causes neonatal meningitis. Transcriptome studies are indispensable to comprehend the pathology and biology of these bacteria. Recently, we showed that nanoparticles loaded with Hesperidin are potential novel antibacterial agents against E. coli K1. Here, bacteria were treated with and without Hesperidin conjugated with silver nanoparticles, and silver alone, and 50% minimum inhibitory concentration was determined. Differential gene expression analysis using RNA-seq, was performed using Degust software and a set of genes involved in cell stress response and metabolism were selected for the study. Results 50% minimum inhibitory concentration with silver-conjugated Hesperidin was achieved with 0.5 μg/ml of Hesperidin conjugated with silver nanoparticles at 1 h. Differential genetic analysis revealed the expression of 122 genes (≥ 2-log FC, P< 0.01) in both E. coli K1 treated with Hesperidin conjugated silver nanoparticles and E. coli K1 treated with silver alone, compared to untreated E. coli K1. Of note, the expression levels of cation efflux genes (cusA and copA) and translocation of ions, across the membrane genes (rsxB) were found to increase 2.6, 3.1, and 3.3- log FC, respectively. Significant regulation was observed for metabolic genes and several genes involved in the coordination of flagella. Conclusions The antibacterial mechanism of nanoparticles maybe due to disruption of the cell membrane, oxidative stress, and metabolism in E. coli K1. Further studies will lead to a better understanding of the genetic mechanisms underlying treatment with nanoparticles and identification of much needed novel antimicrobial drug candidates.


2018 ◽  
Vol 13 (7) ◽  
pp. 1934578X1801300 ◽  
Author(s):  
Subrat Kumar Bhattamisra ◽  
Chew Hui Kuean ◽  
Lee Boon Chieh ◽  
Vivian Lee Yean Yan ◽  
Chin Koh Lee ◽  
...  

The antibacterial activity of geraniol and its effect in combination with ampicillin, amoxicillin and clarithromycin against Staphylococcus aureus, Escherichia coli and Helicobacter pylori was tested. The minimum inhibitory concentrations (MICs) and combinatory effects of geraniol against the bacteria were assessed by using the modified broth microdilution and checkerboard assay, respectively. The combinatory effect is expressed as fractional inhibitory concentration index (FICI). The MIC of geraniol against S. aureus, E. coli and H. pylori was found to be 11200, 5600, and 7325 μg/mL, respectively. A significant synergistic effect was observed with geraniol and ampicillin against S. aureus with FICI in the range 0.19 to 0.32. Geraniol and ampicillin exhibited a partial synergistic effect against E. coli. A similar effect was observed with geraniol and clarithromycin against S. aureus. A partial synergistic effect was observed with clarithromycin and geraniol against H. pylori with the FICI value in the range 0.86 to 0.89. An additive effect was observed with geraniol and amoxicillin combination against H. pylori. However, the amoxicillin and clarithromycin dose was reduced by thirty-two fold when combined with geraniol against H. pylori. The anti- H. pylori effect of geraniol with clarithromycin and amoxicillin could be of potential interest in the treatment of H. pylori infection and associated ulcers in humans. Further, geraniol, in combination with other antibiotics, has substantial therapeutic potential against S. aureus and E.coli infection.


Author(s):  
Ashish Srivastava ◽  
D. B. Mondal

The study was conducted to investigate the antibacterial efficacy against enteropathogenic E. coli of plants commonly used to treat calf-diarrhoea. Methanolic extracts of six plants (Aegle marmelos, Curcuma longa, Dalbergia sissoo, Mangifera indica, Psidium guajava and Punica granatum) were screened for their antibacterial property against enteropathogenic E. coli by standard disc diffusion method. Minimum inhibitory concentration (MIC) and of the extract exhibiting highest antibacterial activity was estimated by broth dilution method and minimum bactericidal concentration (MBC) was measured by streaking the contents of MIC tubes on nutrient agar plates. Among the six extracts tested, only extracts of Curcuma longa, Psidium guajava and Punica granatum exhibited antibacterial activity against E. coli. Out of these three, Punica granatum extract was found to be most effective with a mean inhibition zone of 14.67±0.577 mm followed by Psidium guajava (9.67±0.577 mm) and Curcuma longa (8.67±0.577 mm), produced by the disc containing 8.00 mg of respective extract. Minimum inhibitory concentration and minimum bactericidal concentration of the Punica granatum extract were estimated to be 02.00 mg/mL and 03.00 mg/mL respectively. These findings suggest that methanolic extracts of Curcuma longa, Psidium guajava and Punica granatum possess antibacterial activity against enteropathogenic E.coli


DICP ◽  
1989 ◽  
Vol 23 (6) ◽  
pp. 456-460
Author(s):  
Michael N. Dudley ◽  
Hilary D. Mandler ◽  
Kenneth H. Mayer ◽  
Stephen H. Zinner

Serum inhibitory and bactericidal titers were measured in nine healthy volunteers following single iv doses of ciprofloxacin 100, 150, and 200 mg. The median peak serum bactericidal titer (5 minutes following completion of a 30-minute infusion) against two highly susceptible strains of Escherichia coli ranged between 1:64 and 1:1024 and titers exceeded 1:8 for six hours for all dose levels. The bactericidal titers against two strains of Pseudomonas aeruginosa and a methicillin-resistant strain of Staphylococcus aureus were considerably lower, the median peak being 1:2 at all dose levels. Measured inhibitory and bactericidal titers at five minutes and one hour postinfusion were significantly greater than those predicted (measured serum ciprofloxacin concentration to minimum inhibitory concentration [MIC] or minimum bactericidal concentration [MBC]) for only one strain of E. coli. Intravenous doses of ciprofloxacin 100–200 mg produce high and sustained serum bactericidal titers against highly susceptible bacteria; considerably lower levels of activity are seen against bacteria having higher MICs and MBCs but still considered susceptible to the drug.


Jurnal MIPA ◽  
2014 ◽  
Vol 3 (2) ◽  
pp. 129
Author(s):  
Megawati S. Saroinsong ◽  
Febby E. F. Kandou ◽  
Adelfia Papu ◽  
Marina F. O. Singkoh

Penelitian ini bertujuan untuk menguji daya hambat dari ekstrak metanol beberapa jenis porifera terhadap pertumbuhan bakteri E. coli dan S. aureus. Pengujian aktivitas antibakteri menggunakan metode Kirby-Bauer, yaitu dilakukan dengan mengukur zona hambat di sekeliling cakram kertas. Ekstrak Haliclona sp dapat menghambat pertumbuhan S. aureus pada konsentrasi ekstrak 30%, 60% dan 90% dengan hasil pengukuran diameter zona hambat 13.50 mm, 20.67 mm dan 27.33 mm; serta menghambat pertumbuhan E. coli dengan diameter zona hambat 10.08 mm, 12.83 mm dan 14.17 mm. Daya hambat ekstrak Agelas sp terhadap S. aureus menunjukkan diameter zona hambat 8.33 mm dan hanya menunjukkan pada konsentrasi ekstrak 90%, sementara daya hambat ekstrak Agelas sp pada konsentrasi 30%, 60% dan 90% terhadap E. coli menunjukkan diameter zona hambat sebesar 7.67 mm, 10.17 mm dan 14.17 mm. Daya hambat Spheciospongia sp terhadap S. aureus dan E. coli hanya terlihat pada konsentrasi ekstrak sebesar 90% dengan diameter zona hambat adalah 8.42 mm dan 8.75 mm. Berdasarkan hasil yang diperoleh, dapat disimpulkan bahwa ekstrak Haliclona sp memiliki potensi aktivitas antibakteri yang dapat digunakan sebagai bahan dasar pembuatan obat antibiotik.This research aimed to test the inhibition capabilities of methanol extract from several kinds of Porifera on Escherichia coli and Staphylococcus aureus growth. The antibacterial activity test using the Kirby-Bauer method, which delivered by measuring the inhibition zone around paper disc. The extract of Haliclona sp can inhibit the S. aureus growth at 30%, 60% and 90% of extracts concentration with the measurement of inhibition zone diameters are 13.50 mm, 20.67 mm and 27.33 mm; also inhibit the E. coli growth with inhibition zone diameters are 10.08 mm, 12.83 mm and 14.17 mm. The inhibition capability of Agelas sp extract on S. aureus shows that the inhibition zone diameters is 8.83 mm and only appear at 90% of extracts concentration, meanwhile the inhibition capability of Agelas sp extract at concentration 30%, 60% and 90% on E. coli shows diameters of inhibition zone are 7.67 mm, 10.17 mm and 14.17 mm. The inhibition capability of Spheciospongia sp on S. aureus and E. coli only occurred at 90% of extracts concentration with inhibition zone diameters 8.42 mm and 8.75 mm. Based on the results, it can be assumed that extracts of Haliclona sp has a potential antibacterial activity that can be used as a basic ingredients for antibiotic medicine.


2018 ◽  
Author(s):  
Mehdi Snoussi ◽  
John Paul Talledo ◽  
Nathan-Alexander Del Rosario ◽  
Bae-Yeun Ha ◽  
Andrej Košmrlj ◽  
...  

AbstractAntimicrobial peptides (AMPs) are broad spectrum antibiotics that selectively target bacteria. Here we investigate the activity of human AMP LL37 againstEscherichia coliby integrating quantitative, population and single-cell level experiments with theoretical modeling. Our data indicate an unexpected, rapid absorption and retention of a large number of LL37 byE. colicells upon the inhibition of their growth, which increases the chance of survival for the rest of population. Cultures with high-enough cell density exhibit two distinct subpopulations: a non-growing population that absorb peptides and a growing population that survive owing to the sequestration of the AMPs by others. A mathematical model based on this binary picture reproduces the rather surprising behaviors ofE. colicultures in the presence of LL37, including the increase of the minimum inhibitory concentration with cell density (even in dilute cultures) and the extensive lag in growth introduced by sub-lethal dosages of LL37.


2019 ◽  
Vol 21 (6) ◽  
pp. 280-283
Author(s):  
Farshad Kakian ◽  
Behnam Zamanzad ◽  
Abolfazle Gholipour ◽  
Kiarash Zamanzad

Background and aims: Carbapenems are the final-line treatments for multidrug-resistant, gram-negative infections. The patterns of resistance to carbapenems among hospital bacterial pathogens vary widely across different hospitals in a country. Considering that Escherichia coli is one of the most important causes of nosocomial infections, it is essential to study its drug resistance. Methods: In this descriptive-analytical study, a total of 80 samples of E. coli isolated from inpatients with urinary tract infections (UTIs) were collected in different wards (i.e., women, urology, infectious, and ICU) of Shahrekord hospitals. After the diagnosis and confirmation of bacteria by standard bacteriological methods, their sensitivity to imipenem and meropenem was investigated by the antibiogram (diskdiffusion) method. Then, the minimum inhibitory concentration (MIC) was determined by the E-test strip according to the Clinical and Laboratory Standards Institute (CLSI) standard. Results: In this study, resistance to meropenem and imipenem by antibiogram (disc diffusion) was observed in 21 (25.26%) and 20 (25%) of the isolates, respectively. Twenty isolates had MIC ≥4 μg/mL for meropenem, 13 isolates demonstrated MIC≥4 μg/mL for imipenem, and 14 isolates had 1≤MIC<4 μg/mL and were semi-sensitive. Conclusion: In general, E. coli had significant resistance to carbapenems. Therefore, rapid and accurate identification of these strains can be a major step to the treatment and control of these strains and prevention of the spread of the resistance.


2017 ◽  
Vol 14 (1) ◽  
Author(s):  
Samuel Hager ◽  
Ellen Jensen ◽  
Timothy Johnson ◽  
David Mitchell

Bacteria are quick to adapt and evolve, especially under the effects of selective pressures from chemical antibiotics. In addition, bacteria may develop resistance to antibiotics from multiple classes simultaneously, making their eradication from the human body particularly challenging. This study aims to demonstrate that bacterial multiple-drug resistance can be developed and retained in a laboratory setting. Escherichia coli B was grown in tryptic soy broth in the presence of a small, increasing concentration of streptomycin. This exposure resulted in a strain of E. coli, which had an increased minimum inhibitory concentration (MIC) towards streptomycin, or “resistance.” This resistant strain was then grown in like manner in nalidixic acid and then penicillin G. The result was a strain that became resistant to streptomycin and nalidixic acid, and increasingly resistant to nalidixic acid after penicillin G exposure. Additionally, the bacteria retained resistance to streptomycin and nalidixic acid even after exposure to those chemicals ceased. Genome sequencing and comparison to E. coli B reference strain REL606 revealed the emergence of point mutations with each exposure to an antibiotic. Of particular interest is a mutation associated with the appearance of nalidixic acid resistance. Base pair 4,553,488 was changed from adenine to guanine, resulting in a change from aspartate to glycine in the protein helicase. Previous studies have not indicated mutations to this locus as nalidixic acid resistance conferring. Thus, this mutation may be a novel mutation conferring E. coli B nalidixic acid resistance. Since the region of the mutated helicase is functionally undefined, a mechanism is not apparent. Further research needs to be done to confirm this hypothesis and illuminate a mechanism. KEYWORDS: Bacteria; Escherichia coli; Evolution; Antibiotic Resistance; Nalidixic Acid; Streptomycin; Point Mutation; Single-nucleotide Polymorphism; Helicase; Minimum Inhibitory Concentration


Sign in / Sign up

Export Citation Format

Share Document