scholarly journals An Effect Of Biodiesel (B20) On Life Time Locomotive Fuel Filter

2020 ◽  
Vol 13 (3) ◽  
pp. 201-208
Author(s):  
Muhammad Maruf ◽  
Ihwan Haryono

The effect of using B20 palm oil biodiesel on rail locomotive fuel filters was evaluated in this study. The generator water separator filter, generator main filter and locomotive drive filter after being used along the filter replacement period were analyzed in laboratories and compared with new ones as reference. The analysis was using SEM/EDS, FTIR and GC. The FTIR and GC test results show that the fuel filter has a number of deposits from the components of biodiesel fuel, that are diesel and biodiesel. However, morphological test results using SEM show that the filter surface has not been completely covered by liquid and fuel deposits. The results of the tests and analysis indicated that the usage of 125 hours (for locomotive genset) and 3 months for locomotive drive engine with 20% palm biodiesel fuel can still guarantee the filtration to maintain the performance and prevent damage to fuel and engine system components.

2019 ◽  
Vol 13 (3) ◽  
pp. 48-53
Author(s):  
P. P. Oshchepkov ◽  
I. A. Zaev ◽  
S. V. Smirnov ◽  
A. V. Bizhaev

Palm oil is comparable to traditional diesel fuel in terms of calorifi c value, stoichiometric ratio, and cetane number. However, its increased kinematic viscosity and pour point make it diffi cult to use in pure form in diesel engines. (Research purpose) To study specifi c features of burning: diesel fuel with various additives of palm oil (biodiesel fuel); pure 100-percent palm oil; biodiesel fuel with various additives of palm oil and hydrogen peroxide, as well as to develop a method to control its combustion process. (Materials and methods) To determine the ignition time lag, the authors chose a method of kinetic modeling of self-ignition of biodiesel fuel in the air. The self-ignition process was simulated using the Chemical Workbench software package. An adiabatic calorimetric bomb model was used to perform calculations. To describe the process of self-ignition, a universal kinetic mechanism was used, which was verifi ed to calculate self-ignition of diesel and biodiesel fuel surrogates, as well as the formation of toxic substances and soot in the combustion processes. (Results and discussion) It is shown that adding palm oil to diesel fuel increases its ignition time lag, especially at low and medium temperatures of 750-950 kelvin. It was determined that with addition of 10 percent palm oil, the ignition time lag of biodiesel fuel is almost the same as that of diesel fuel no more than 5 percent. Increasing the amount of palm oil additive up to 30 percent and more signifi cantly increases the ignition time lag of the fuel. When using only palm oil as a fuel, the ignition time lag in the temperature range of 800-950 kelvin increases in two times. The study determined the optimal amount of hydrogen peroxide to be used for each composition of biodiesel fuel with various additives of palm oil. (Conclusions) It is shown that additives of hydrogen peroxide can infl uence the reactivity of biodiesel fuel and thereby regulate its ignition time lag.


Author(s):  
Willyanto Anggono ◽  
M. M. Noor ◽  
F. D. Suprianto ◽  
L. A. Lesmana ◽  
G. J. Gotama ◽  
...  

In order to reduce the use of fossil fuel without interfering the availability of food crop, Cerbera manghas biodiesel has been studied as potential renewable fuel. This study investigated Cerbera manghas biodiesel as a replacement for pure petro-diesel and palm oil biodiesel produced in Indonesia. The investigation result indicates that Cerbera manghas biodiesel fuel has a lower density, kinematic viscosity, sulfur content, color (lighter), water content, distillation point compared to pure petro-diesel and palm oil biodiesel. Higher flash point and cetane index value in Cerbera manghas biodiesel were also discovered. The study investigated further the effect of biodiesel derived from Cerbera manghas biodiesel compared with pure petro-diesel and palm oil biodiesel in a single cylinder diesel engine. The study suggested that Cerbera manghas biodiesel has better engine performance (fuel consumption, brake mean effective pressure, thermal efficiency, torque, and power) compared to pure petro-diesel and palm oil biodiesel. The utilization of Cerbera manghas biodiesel gave better engine performance output compared to pure petro-diesel and palm oil biodiesel. This study supported the viability of Cerbera manghas biodiesel to be implemented as an alternative diesel fuel without interfering food resources or requiring additional modification to the existing diesel engine.


2019 ◽  
Vol 130 ◽  
pp. 01030
Author(s):  
Sutrisno ◽  
Willyanto Anggono ◽  
Fandi Dwiputra Suprianto ◽  
Cokro Daniel Santosa ◽  
Michael Suryajaya ◽  
...  

Avocado (Persea americana Mill) is a popular fruit in Indonesia. Its popularity leads to high consumption of this fruit and wastes from its seed. In order to develop renewable energy and reducing wastes in the environment, P. americana seed may be extracted for its oil to create biodiesel fuel. In this study, P. americana seed is obtained through the soxhlet apparatus and transesterification process. After obtaining P. americana seed oil, the oil was mixed with pure petro-diesel with a ratio of 10:90 (B10 fuel) and 20:80 (B20 fuel), respectively. These fuels were tested for their fuel characteristics and engine performances, together with pure petro-diesel and palm oil biodiesel. The fuel characteristics results suggest positive characteristics of B10 and B20 compared to other fuels. For engine performance tests, B10 and B20 fuels have less engine performance than other fuels. However, the differences between these fuels results are small. Overall, the positive aspect of B10 and B20 fuels supersede small disadvantages they have and thus suitable to substitute pure petro-diesel and palm oil biodiesel.


2020 ◽  
Vol 8 (4) ◽  
pp. 41-46
Author(s):  
Anya Prilla Azaria ◽  
◽  
Sylvia Ayu Bethari ◽  
Mohammad Nasikin ◽  
◽  
...  

The use of the biodiesel B-20 especially in low temperature causes a blockage in the diesel vehicle fuel filter, which in turn causes the vehicle to strike. The blockage is caused by the deposition of monoglycerides (MG) agglomeration. These MG deposits reduce the flow properties of B-20. In this study, the Sorbitan Monooleate (SMO) surfactant was used in palm oil biodiesel (B-100) with 3 variations of alcohol, which are methanol, ethanol, and octanol. For each biodiesel with 0.4% MG content, the concentration of SMO surfactant was varied by 0.1-1% by volume of biodiesel. The molar ratio of surfactant/co-surfactants used is 1:1. Samples of biodiesel were stored at room temperature (±27°C). The effect of SMO and three variations of alcohol was analyzed using two flow properties parameters: Cloud Point (CP), Cold Filter Plugging Point (CFPP), and also supporting data, such as flashpoint and acid number. CP and CFPP were tested every week for a month’s observation. The addition of SMO and octanol to palm oil biodiesel gave the best results by reducing CP by 4.4°C and CFPP by 3°C. The interaction between MG, oleic tails, and hydrogen bonding between them has been analyzed by Fourier-Transform Infrared Spectroscopy (FTIR) method. There are indications of intermolecular hydrogen bonding to MG after the addition of SMO and octanol at wavenumbers 3231.11 and 3289 cm-1.


Fuel ◽  
2015 ◽  
Vol 150 ◽  
pp. 732
Author(s):  
Vladimir Plata ◽  
Carlos Ortiz ◽  
Paola Gauthier-Maradei ◽  
Viatcheslav Kafarov

2021 ◽  
Vol 1126 (1) ◽  
pp. 012074
Author(s):  
Nitin Dattatreya Kamitkar ◽  
Satishkumar ◽  
A N Basavaraju ◽  
Shashikant Kushnoore ◽  
A B Deepa ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 692
Author(s):  
Navin Ramasamy ◽  
Mohammad Abul Kalam ◽  
Mahendra Varman ◽  
Yew Heng Teoh

In this study, the performance and emission of a thermal barrier coating (TBC) engine which applied palm oil biodiesel and diesel as a fuel were evaluated. TBC was prepared by using a series of mixture consisting different blend ratio of yttria stabilized zirconia (Y2O3·ZrO2) and aluminum oxide-silicon oxide (Al2O3·SiO2) via plasma spray coating technique. The experimental results showed that mixture of TBC with 60% Y2O3·ZrO2 + 40% Al2O3·SiO2 had an excellent nitrogen oxide (NO), carbon monoxide (CO), carbon dioxide (CO2), and unburned hydrocarbon (HC) reductions compared to other blend-coated pistons. The finding also indicated that coating mixture 50% Y2O3·ZrO2 + 50% Al2O3·SiO2 had the highest brake thermal efficiency (BTE) and lowest of brake specific fuel consumption (BSFC) compared to all mixture coating. Reductions of HC and CO emissions were also recorded for 60% Y2O3·ZrO2 + 40% Al2O3·SiO2 and 50% Y2O3·ZrO2 + 50% Al2O3·SiO2 coatings. These encouraging findings had further proven the significance of TBC in enhancing the engine performance and emission reductions operated with different types of fuel.


2020 ◽  
Vol 32 (4) ◽  
pp. 733-738 ◽  
Author(s):  
R. Manurung ◽  
Taslim ◽  
A.G.A. Siregar

Deep eutectic solvents (DESs) have numerous potential applications as cosolvents. In this study, use of DES as organic solvents for enzymatic biodiesel production from degumming palm oil (DPO) was investigated. Deep eutectic solvent was synthesized using choline chloride salt (ChCl) compounds with glycerol and 1,2-propanediol. Deep eutectic solvent was characterized by viscosity, density, pH and freezing values, which were tested for effectiveness by enzymatic reactions for the production of palm biodiesel with raw materials DPO. Deep eutectic solvent of ChCl and glycerol produced the highest biodiesel yield (98.98%); weight of DES was only 0.5 % of that of the oil. In addition, the use of DES maintained the activity and stability of novozym enzymes, which was assessed as the yield until the 6th usage, which was 95.07 % biodiesel yield compared with the yield without using DES. Hence, using DES, glycerol in enzymatic biodiesel production had high potentiality as an organic solvent for palm oil biodiesel production


Sign in / Sign up

Export Citation Format

Share Document