scholarly journals Efficiency and Effectiveness Comparative Analysis of Wide Flange Beams and Cellular Beams in A Case Project United Tractor

2020 ◽  
Vol 2 (2) ◽  
pp. 30-47
Author(s):  
Donald Essen ◽  
Muhammad Nur Rahman

United Tractors Company will build a sports center building consist of 3 floors using steel structures. Nowadays, limited land is one of the building development problems. The construction of multi-stored buildings is a solution to the limited land problem. The writer has analyzed beam design with a Wide Flange and Cellular system. Focused on the beam element with construction material in the form of steel with steel quality BJ-37, Fy 240 MPa, Fu 370 MPa. The strength and efficiency of the use of steel tonnage were also analyzed. E-Tabs software 2016 used to steel beam structure analysis. In this beam design planning refers to the steel structure planning following SNI 1729: 2015, SNI 1727: 2013, AISC 2010, ASCE 7-10, and also AISC Design Guide 31. The results of manual verification show that the cross-section of WF 400x200x8x13 and CB 250x125x5x8 with a span length of 6 meters is declared to be strong and safe because fill the strong requirements needs to be smaller than the strength of the plan. The efficiency of the use of Cellular Beam was compared to Wide Flange, the longer of Cellular Beam will increase steel tonnage reductions. The percentage reduction in steel weight will continue to increase when the length of steel usage also increases. This concludes that the use of steel length with steel weight reduction will move linearly. Where in this project with a steel beam length of 1439.27m reduction of steel tonnage was at 19.5%.

Author(s):  
Vera V Galishnikova ◽  
Tesfaldet H Gebre

Introduction. Structural stability is an essential part of design process for steel structures and checking the overall stability is very important for the determination of the optimum steel beams section. Lateral torsional buckling (LTB) normally associated with beams subject to vertical loading, buckling out of the plane of the applied loads and it is a primary consideration in the design of steel structures, consequently it may reduce the load currying capacity. Methods. There are several national codes to verify the steel beam against LTB. All specifications have different approach for the treatment of LTB and this paper is concentrated on three different methods: America Institute of Steel Construction (AISC), Eurocode (EC) and Russian Code (SP). The attention is focused to the methods of developing LTB curves and their characteristics. Results. AISC specification identifies three regimes of buckling depending on the unbraced length of the member ( Lb ). However, EC and SP utilize a reduction factor (χ LT ) to treat lateral torsional buckling problem. In general, flexural capacities according to AISC are higher than those of EC and SP for non-compact sections.


2022 ◽  
Vol 8 ◽  
Author(s):  
Jinhe Gao ◽  
Jiahuan Xi ◽  
Yuwen Xu ◽  
Baokui Chen ◽  
Dan Zhao ◽  
...  

To avoid brittle fracture and plastic yielding of steel beam-to-column connections under earthquakes, a new beam-to-column connection of steel structures with all-steel buckling restrained braces (BRBs) is proposed. The all-steel BRB is connected to the steel beam and column members through pins to form a new connection system. Taking the T-shaped beam-to-column connection steel structure as the research object, two structural types with an all-steel BRB installed on one side (S-type) and two sides (D-type) are considered. Theoretical equations of the connection system’s initial stiffness and yield load are derived through the mechanical models. The yield load, main strain distribution, energy dissipation, and stiffness of the connection system are investigated through quasi-static tests to verify the connection system’s seismic performance. The tests revealed that the proposed new connection system is capable of achieving a stable hysteresis behavior. At the end of loading, the beam and column members are not damaged, and the plastic deformation is concentrated in the plastic energy dissipating replaceable BRB, and the beam and column basically remain elastic. The proposed equations approximately estimated the load response of the proposed connection system. The results show that the damage mode of this new connection system under seismic loading is BRB yielding, with an elastic response from the beam-column members.


2015 ◽  
Vol 76 (9) ◽  
Author(s):  
Fariz Aswan Ahmad Zakwan ◽  
Renga Rao Krishnamoorthy ◽  
Azmi Ibrahim ◽  
Abdul Manaff Ismail

Cellular steel beam (CSB) is getting more and more popular to be used as the main structural member for steel building structure in the United Kingdom (UK). Despite quite costly to erect and assemble a steel structure member compared to concrete, it has several advantages in terms of lightweight material, higher strength, easy to assemble and aesthetic value. Even though the use of CSB is quite significantly positive, the negative side also needs to be addressed. Any steel structures are prone to fire exposure scenario. The strength of CSB will be significantly decreased when exposed to elevated temperature due to fire. Large deformation from experimental procedure will be clearly seen after the time-temperature curve reach critical stage. Vierendeel bending mechanism and web-post buckling are some of the drawbacks of the CSB at elevated temperature. In this paper, general purpose ABAQUS Finite Element (Version 6.14) on large deformation of protected and unprotected CSB at elevated temperature is proposed. Performance based approach is introduced to validate the numerical analysis with the experimental results from the available Compendium of UK Standard Fire Test Data produced by British Steel Corporation Research Services, Swinden Laboratories, UK.


2019 ◽  
Vol 11 (2) ◽  
Author(s):  
Tiago Ribeiro ◽  
Ana Sousa

Throughout the last two decades, seismic design standards evolved to ever more comprehensive and detailed prescriptions, stressing out the need for design methods that deal with earthquake effects not as actions, but as a design philosophy. The Eurocode 8 adoption as national law throughout the European Union countries and informally in many parts of Africa, Asia and Latin America is the pretext for the current study. It aims to provide some guidance to the seismic design of steel structures as well as to the Eurocode 8 implementation by the designers.Some lines on the preliminary design of structural systems were written based on several real cases of structures designed taking into account the seismic action. Such a content is, usually, relevant in any design guide, given its value in enhancing the design technical and economical content. However, it is now of utter significance at the current context as an essential tool to facilitate the safety checking of several code requirements.Some of the Eurocode 8 prescriptions are then decoded, explained and justified based on the supportive bibliography. The information is subsequently ordered as a design guide, where some procedures are proposed to cope with the code interrelated prescriptions and one structural solution is proposed in order to overcome a design challenge while complying with the code.One last but not less relevant addressed issue is the fact that some Eurocode 8 prescriptions may be reviewed, in the eyes of a designer, given its practical outcome. Such issues are identified, explained and some slight code adjustments are suggested.


2021 ◽  
Vol 4 (1) ◽  
pp. 51
Author(s):  
Muhamad Rusli A. ◽  
Prabowo Setiawan

The axial capacity of a full height rectangular opening castellated steel beam with steel reinforcement stiffeners is proven to prevent Vierendeel failure mechanism. The effect is an increase in flexural capacity of the structure. Diameter of the steel reinforcement stiffeners is revealed to have an effect on its strength in resisting axial forces occur in the structure. However, size of the diameter is limited to the strength maximum value of the steel flange section in withstanding the moment force. Using optimal design of the castellated steel structure, this research aimed to find out the increase value of the axial capacity. There were two models of steel structures employed in the study, IWF 200x100x5.5x8 and castellated beam 362x100x5.5x8, both were loaded with axial directions. Analyses were conducted using truss and pushover methods. Results of the study showed an increase in both flexural (36.81%) and axial (60.78%) capacities. The increase in the value of structure capacity mainly influenced by the stiffeners shortened the effective length of the structure.


Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 41 ◽  
Author(s):  
Jian Jiang ◽  
Jinwei Jiang ◽  
Xiaowei Deng ◽  
Zifeng Deng

Carbon fiber reinforced polymer (CFRP) plates are widely used to retrofit or reinforce steel structures, and the debonding damage between the steel structure and the CFRP plate is a typical failure in strengthening steel structures. This paper proposes a new approach to detecting debonding between a steel beam and a reinforcing CFRP plate by using removable lead zirconate titanate (PZT)-based transducers and active sensing. The removable PZT-based transducers are used to implement the active sensing approach, in which one transducer, as an actuator, is used to generate stress wave, and another transducer, as a sensor, is used to detect the stress wave that propagates across the bonding between the steel beam and the reinforcing CFRP plate. The bonding condition significantly influences the received sensor signal, and a wavelet-packet-based energy index (WPEI) is used to quantify the energy of the received signal to evaluate the severity of debonding between the steel beam and the reinforcing CFRP plate. To validate the proposed approach, experimental studies were performed, and two removable PZT-based transducers were designed and fabricated to detect the debonding between a steel beam and the reinforcing CRFP plate. The experimental results demonstrate the feasibility of the proposed method in detecting the debonding between a steel beam and the reinforcing CFRP plate using removable PZT-based transducers.


2013 ◽  
Vol 351-352 ◽  
pp. 519-523
Author(s):  
Qiang Sun ◽  
Wei Tian ◽  
Ding Tang Wang

According to the requirements of fire science theory and structural fire resistance design, and the situation of possible disasters that may occur in the building based on practical project, this paper analyzes the mechanical characteristics of prestressed steel beam under high temperature (fire) circumstances. It puts forward how to consider the effects of parameters of different steel categories, the magnitude of prestress tension control forces and prestressed loss of steel cables on the structural bearing capacity in prestressed steel beam design, which can provide references for the fire resistance design of prestressed steel structures.


2011 ◽  
Vol 255-260 ◽  
pp. 2341-2344
Author(s):  
Mohammad Saeed Masoomi ◽  
Siti Aminah Osman ◽  
Ali Jahanshahi

This paper presents the performance of base-isolated steel structures under the seismic load. The main goals of this study are to evaluate the effectiveness of base isolation systems for steel structures against earthquake loads; to verify the modal analysis of steel frame compared with the hand calculation results; and development of a simulating method for base-isolated structure’s responses. Two models were considered in this study, one a steel structure with base-isolated and the other without base-isolated system. The nonlinear time-history analysis of both structures under El Centro 1940 seismic ground motion was used based on finite element method through SAP2000. The mentioned frames were analyzed by Eigenvalue method for linear analysis and Ritz-vector method for nonlinear analysis. Simulation results were presented as time-acceleration graphs for each story, period and frequency of both structures for the first three modes.


Author(s):  
Haigen Cheng ◽  
Cong Hu ◽  
Yong Jiang

AbstractThe steel structure under the action of alternating load for a long time is prone to fatigue failure and affects the safety of the engineering structure. For steel structures in complex environments such as corrosive media and fires, the remaining fatigue life is more difficult to predict theoretically. To this end, the article carried out fatigue tests on Q420qD high-performance steel cross joints under three different working conditions, established a 95% survival rate $$S{ - }N$$ S - N curves, and analyzed the effects of corrosive media and high fire temperatures on its fatigue performance. And refer to the current specifications to evaluate its fatigue performance. The results show that the fatigue performance of the cross joint connection is reduced under the influence of corrosive medium, and the fatigue performance of the cross joint connection is improved under the high temperature of fire. When the number of cycles is more than 200,000 times, the design curves of EN code, GBJ code, and GB code can better predict the fatigue life of cross joints without treatment, only corrosion treatment, and corrosion and fire treatment, and all have sufficient safety reserve.


2021 ◽  
Vol 13 (12) ◽  
pp. 2263
Author(s):  
Dongfeng Jia ◽  
Weiping Zhang ◽  
Yuhao Wang ◽  
Yanping Liu

As fundamental load-bearing parts, the cylindrical steel structures of transmission towers relate to the stability of the main structures in terms of topological relation and performance. Therefore, the periodic monitoring of a cylindrical steel structure is necessary to maintain the safety and stability of existing structures in energy transmission. Most studies on deformation analysis are still focused on the process of identifying discrepancies in the state of a structure by observing it at different times, yet relative deformation analysis based on the data acquired in single time has not been investigated effectively. In this study, the piecewise cylinder fitting method is presented to fit the point clouds collected at a single time to compute the relative inclination of a cylindrical steel structure. The standard deviation is adopted as a measure to evaluate the degree of structure deformation. Meanwhile, the inclination rate of each section is compared with the conventional method on the basis of the piecewise cylinder fitting parameters. The validity and accuracy of the algorithm are verified by real transmission tower point cloud data. Experimental results show that the piecewise cylinder fitting algorithm proposed in this research can meet the accuracy requirements of cylindrical steel structure deformation analysis and has high application value in the field of structure deformation monitoring.


Sign in / Sign up

Export Citation Format

Share Document