scholarly journals Characterization of Carotenoids Content and Composition of Saffron from Different Localities -

2020 ◽  
Vol 10 (1) ◽  
pp. 34-40
Author(s):  
Rashidi Othman ◽  
Farah Ayuni Mohd Hatta ◽  
Norazian Mohd. Hassan   ◽  
Suhair Kamoona

The most essential carotenoids for humans are found in plants that are normally yellow, orange, and red coloured pigments. They are typically and mostly lipophilic in nature, but some unique plant species may yield water-soluble carotenoids. Saffron or Crocus sativus contains hydrophilic carotenoids named crocin. Thus, this paper will describe the extraction and characterization of hydrophilic and lipophilic carotenoids (colour properties) obtained from saffrons of different geographical origins. They are specifically the Iranian, Turkish, and Kashmiri saffron respectively. Maceration techniques have been employed to extract the targeted compounds, whereas the characterization of the compounds has been analysed using HPLC. The extraction and characterization of carotenoids in saffron from different geographical origins found that the amount of crocin content was substantially higher in Iranian saffron, which was 11414.67 ± 516.34 µg/g DW followed by Turkish and Kashmiri saffron. Lipohilic carotenoids (i.e. crocetin, ?-carotene, and zeaxanthin) were detectable in Iranian and Turkish saffron but absent in Kashmiri saffron. Similarly, the highest amount of crocetin content was found in Iranian saffron at 1054.73 ± 50.31 µg/g DW, while the highest amount of ?-carotene and zeaxanthin was found in Turkish saffron at 512.92 ± 79.98 µg/g DW and 252.04 ± 60.34 µg/g DW, respectively. There was a marked difference in carotenoid composition sourced from different localities. Various environmental factors like climatic conditions, agricultural practices, stigma separation, and storing and drying processes may play an important role to explain such difference.

2021 ◽  
pp. 1-13
Author(s):  
Surya Kumar Maharjan ◽  
Frank J. Sterck ◽  
Niels Raes ◽  
Lourens Poorter

Abstract Tropical montane systems are characterized by a high plant species diversity and complex environmental gradients. Climate warming may force species to track suitable climatic conditions and shift their distribution upward, which may be particularly problematic for species with narrow elevational ranges. To better understand the fate of montane plant species in the face of climate change, we evaluated a) which environmental factors best predict the distribution of 277 plant species along the Himalayan elevational gradient in Nepal, and b) whether species elevational ranges increase with increasing elevation. To this end, we developed ecological niche models using MaxEnt by combining species survey and presence data with 19 environmental predictors. Key environmental factors that best predicted the distribution of Himalayan plant species were mean annual temperature (for 54.5% of the species) followed by soil clay content (10.2%) and slope (9.4%). Although temperature is the best predictor, it is associated with many other covariates that may explain species distribution, such as irradiance and potential evapotranspiration. Species at both ends of the Himalayan elevational gradient had narrower elevational ranges than species in the middle. Our results suggest that with further global warming, most Himalayan plant species have to migrate upward, which is especially critical for upland species with narrow distribution ranges.


2021 ◽  
Vol 27 (3) ◽  
pp. 263-275
Author(s):  
Shabir Ahmad ◽  
FAWAD KHAN ◽  
ZAHIR MUHAMMAD ◽  
KHUSHDIL KHAN ◽  
MUHAMMAD JAMIL KHAN ◽  
...  

The present study was carried out to determine the floristic composition and ecological characterization of the flora of tehsil Sarai Naurang. The floristic diversity of the plant consists of 143 species belonging to 47 different families having 42 dicots and 05 monocots. Poaceae were comprised as the dominant families containing 18 species followed by Brassicaceae, Fabaceae, Asteraceae and Solanaceae. Therophytes were dominant class having 89 species (62.23%) followed by Microphanerophytes 19 species (13.28%), Hemicryptophytes 13 species (9.09%),Chamaephytes 8 species (5.59%), Geophytes 7 species (4.89%), Nanophanerophytes 6 species (4.19%) and Megaphanerophytes have 1 species (0.69%). Leaf size of most plant species was reduced indicating an adaptation to arid climatic conditions. The leaf size showed that Nanophylls size were the dominant followed by Microphyll (40 species (27.97%), Leptophyll (34 species (23.77%), mesophyll (15 species (10.48%), megaphyll (2 species( 1.39%) and macrophyll 1 species (0.69%).


Author(s):  
B. J. Grenon ◽  
A. J. Tousimis

Ever since the introduction of glutaraldehyde as a fixative in electron microscopy of biological specimens, the identification of impurities and consequently their effects on biologic ultrastructure have been under investigation. Several reports postulate that the impurities of glutaraldehyde, used as a fixative, are glutaric acid, glutaraldehyde polymer, acrolein and glutaraldoxime.Analysis of commercially available biological or technical grade glutaraldehyde revealed two major impurity components, none of which has been reported. The first compound is a colorless, water-soluble liquid with a boiling point of 42°C at 16 mm. Utilizing Nuclear Magnetic Resonance (NMR) spectroscopic analysis, this compound has been identified to be — dihydro-2-ethoxy 2H-pyran. This impurity component of the glutaraldehyde biological or technical grades has an UV absorption peak at 235nm. The second compound is a white amorphous solid which is insoluble in water and has a melting point of 80-82°C. Initial chemical analysis indicates that this compound is an aldol condensation product(s) of glutaraldehyde.


2017 ◽  
Vol 28 (1-2) ◽  
pp. 28-35 ◽  
Author(s):  
B. A. Baranovski

Nowadays, bioecological characteristics of species are the basis for flora and vegetation studying on the different levels. Bioecological characteristics of species is required in process of flora studying on the different levels such as biotopes or phytocenoses, floras of particular areas (floras of ecologically homogeneous habitats), and floras of certain territories. Ramensky scale is the one of first detailed ecological scales on plant species ordination in relation to various environmental factors; it developed in 1938 (Ramensky, 1971). A little later (1941), Pogrebnyak’s scale of forest stands was proposed. Ellenberg’s system developed in 1950 (Ellenberg, 1979) and Tsyganov’s system (Tsyganov, 1975) are best known as the systems of ecological scales on vascular plant species; these systems represent of habitat detection by ecotopic ecomorphs of plant species (phytoindication). Basically, the system proposed by Alexander Lyutsianovich Belgard was the one of first system of plant species that identiified ectomorphs in relation to environmental factors. As early as 1950, Belgard developed the tabulated system of ecomorphs using the Latin ecomorphs abbreviation; he also used the terminology proposed in the late 19th century by Dekandol (1956) and Warming (1903), as well as terminology of other authors. The article analyzes the features of Belgard’s system of ecomorphs on vascular plants. It has certain significance and advantages over other systems of ecomorphs. The use of abbreviated Latin names of ecomorphs in tabular form enables the use shortened form of ones. In the working scheme of Belgard’s system of ecomorphs relation of species to environmental factors are represented in the abbreviated Latin alphabetic version (Belgard, 1950). Combined into table, the ecomorphic analysis of plant species within association (ecological certification of species), biotope or area site (water area) gives an explicit pattern on ecological structure of flora within surveyed community, biotope or landscape, and on environmental conditions. Development and application by Belgrard the cenomorphs as «species’ adaptation to phytocenosis as a whole» were completely new in the development of systems of ecomorphs and, in this connection, different coenomorphs were distinguished. Like any concept, the system of ecomorphs by Belgard has the possibility and necessity to be developed and added. Long-time researches and analysis of literature sources allow to propose a new coenomorph in the context of Belgard’s system of ecomorphs development: silvomargoant (species of forest margin, from the Latin words margo – edge, boundary (Dvoretsky, 1976), margo – margin, ad margins silvarum – along the deciduous forest margins). As an example of ecomorphic characterization of species according to the system of ecomorphs by Belgard (when the abbreviated Latin ecomorph names are used in tabular form and the proposed cenomorph is used), it was given the part of the table on vascular plants ecomorphs in the National Nature Park «Orelsky» (Baranovsky et al). The Belgard’s system of ecomorphs is particularly convenient and can be successfully applied to data processing in the ecological analysis of the flora on wide areas with significant species richness, and the proposed ecomorph will be another necessary element in the Belgard’s system of ecomorphs. 


1988 ◽  
Vol 27 (4II) ◽  
pp. 595-604 ◽  
Author(s):  
Eshya Mujahid Mukhtar ◽  
Hanid Mukhtar

Agricultural production depends upon certain crucial inputs e.g., water, fertilizer etc. In the less developed regions of South Asia in general, and the indo-Pakistan sub-continent in particular, the use of these inputs depends not only upon the financial affordability but also upon the institutional accessibility of farmers to these inputs. Besides high economic costs, bureaucratic controls and corruption regarding the distribution of inputs have created problems of limited accessibility, especially to the small farmers. In the absence of any credit, information and/or input distribution networks, the use of these inputs, and related productivity gains, become confined to that class of farmers which not only has better access to these inputs but is capable of using them in the best possible way e.g. use of water and fertilizer in the appropriate amount and at the appropriate time. This paper attempts to study how input use and input productivity vary across farm sizes, with some reference to the infrastructural and institutional factors, whose development play an important role in improving the distribution and productivity of inputs. For such an analysis, a comparison of the two Punjabs i.e. Pakistani and Indian Punjabs, presents an ideal framework, Separated by a national boundary since 1947, the two Punjabs enjoy a common history and culture, similar agricultural practices and agro-climatic conditions, Government policies in the two Punjabs, however, have not only differed between the two provinces at the same time, but also over time in the same province. It may be noted that due to certain policy measures, land distribution, tenancy conditions, promotion of agricultural co-operatives and provision of infrastructural features, such as roads and electricity, are relatively more improved in Indian than Pakistani Punjab.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1299
Author(s):  
Pablo Doménech ◽  
Aleta Duque ◽  
Isabel Higueras ◽  
José Luis Fernández ◽  
Paloma Manzanares

Olive trees constitute one of the largest agroindustries in the Mediterranean area, and their cultivation generates a diverse pool of biomass by-products such as olive tree pruning (OTP), olive leaves (OL), olive stone (OS), and extracted olive pomace (EOP). These lignocellulosic materials have varying compositions and potential utilization strategies within a biorefinery context. The aim of this work was to carry out an integral analysis of the aqueous extractives fraction of these biomasses. Several analytical methods were applied in order to fully characterize this fraction to varying extents: a mass closure of >80% was reached for EOP, >76% for OTP, >65% for OS, and >52% for OL. Among the compounds detected, xylooligosaccharides, mannitol, 3,4-dihydroxyphenylglycol, and hydroxytyrosol were noted as potential enhancers of the valorization of said by-products. The extraction of these compounds is expected to be more favorable for OTP, OL, and EOP, given their high extractives content, and is compatible with other utilization strategies such as the bioconversion of the lignocellulosic fraction into biofuels and bioproducts.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1018
Author(s):  
Massimo Marcioni ◽  
Jenny Alongi ◽  
Elisabetta Ranucci ◽  
Mario Malinconico ◽  
Paola Laurienzo ◽  
...  

The hitherto known polyamidoamines (PAAs) are not suitable as structural materials because they are usually water-soluble or swellable in water. This paper deals with the synthesis and characterization of semi-crystalline hydrophobic PAAs (H-PAAs) by combining different bis-sec-amines with bis-acrylamides obtained from C6–C12 bis-prim-amines. H-PAAs were initially obtained in a solution of benzyl alcohol, a solvent suitable for both monomers and polymers. Their number average molecular weights, M¯n, which were determined with 1H-NMR by evaluating the percentage of their terminal units, varied from 6000 to >10,000. The solubility, thermal properties, ignitability and water resistance of H-PAAs were determined. They were soluble in organic solvents, semi-crystalline and thermally stable. The most promising ones were also prepared using a bulk process, which has never been previously reported for PAA synthesis. In the form of films, these H-PAAs were apparently unaffected by water. The films underwent tensile and wettability tests. They showed similar Young moduli (260–263 MPa), whereas the maximum stress and the stress at break depended on the number of methylene groups of the starting bis-acrylamides. Their wettability was somewhat higher than that of common Nylons. Interestingly, none of the H-PAAs considered, either as films or powders, ignited after prolonged exposure to a methane flame.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1140
Author(s):  
Silvana Alfei ◽  
Gabriella Piatti ◽  
Debora Caviglia ◽  
Anna Maria Schito

The growing resistance of bacteria to current chemotherapy is a global concern that urgently requires new and effective antimicrobial agents, aimed at curing untreatable infection, reducing unacceptable healthcare costs and human mortality. Cationic polymers, that mimic antimicrobial cationic peptides, represent promising broad-spectrum agents, being less susceptible to develop resistance than low molecular weight antibiotics. We, thus, designed, and herein report, the synthesis and physicochemical characterization of a water-soluble cationic copolymer (P5), obtained by copolymerizing the laboratory-made monomer 4-ammoniumbuthylstyrene hydrochloride with di-methyl-acrylamide as uncharged diluent. The antibacterial activity of P5 was assessed against several multi-drug-resistant clinical isolates of both Gram-positive and Gram-negative species. Except for strains characterized by modifications of the membrane charge, most of the tested isolates were sensible to the new molecule. P5 showed remarkable antibacterial activity against several isolates of genera Enterococcus, Staphylococcus, Pseudomonas, Klebsiella, and against Escherichia coli, Acinetobacter baumannii and Stenotrophomonas maltophilia, displaying a minimum MIC value of 3.15 µM. In time-killing and turbidimetric studies, P5 displayed a rapid non-lytic bactericidal activity. Due to its water-solubility and wide bactericidal spectrum, P5 could represent a promising novel agent capable of overcoming severe infections sustained by bacteria resistant the presently available antibiotics.


Sign in / Sign up

Export Citation Format

Share Document