scholarly journals Neuromarketing: the next step in market research?

Eureka ◽  
2010 ◽  
Vol 1 (1) ◽  
pp. 34-42 ◽  
Author(s):  
Christopher R Madan

Neuromarketing is an emerging interdisciplinary field connecting psychology and neuroscience with economics. The goal of neuromarketing is to study how the brain is physiologically affected by advertising and marketing strategies. In order to evaluate the effectiveness of these strategies, brain activity resulting from viewing an advertisement is monitored and measured using neuroimaging techniques such as functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). Neuromarketing studies usually measure preference between products in terms of brand familiarity or product preference. In traditional marketing studies, measures such as the product preference for a particular advertisement is sometimes difficult to measure, as a viewer may hold a cognitive bias. However, brand familiarity and product preference have been correlated with neural activity. The field of neuromarketing is still viewed with caution from consumer protection groups as well as many academics due to the possible ethical implications of designing advertisements to intentionally cause specific neurological effects.

Author(s):  
Matthew R. Short ◽  
Julio C. Hernandez-Pavon ◽  
Alyssa Jones ◽  
Jose L. Pons

AbstractStudying the human brain during interpersonal interaction allows us to answer many questions related to motor control and cognition. For instance, what happens in the brain when two people walking side by side begin to change their gait and match cadences? Adapted from the neuroimaging techniques used in single-brain measurements, hyperscanning (HS) is a technique used to measure brain activity from two or more individuals simultaneously. Thus far, HS has primarily focused on healthy participants during social interactions in order to characterize inter-brain dynamics. Here, we advocate for expanding the use of this electroencephalography hyperscanning (EEG-HS) technique to rehabilitation paradigms in individuals with neurological diagnoses, namely stroke, spinal cord injury (SCI), Parkinson’s disease (PD), and traumatic brain injury (TBI). We claim that EEG-HS in patient populations with impaired motor function is particularly relevant and could provide additional insight on neural dynamics, optimizing rehabilitation strategies for each individual patient. In addition, we discuss future technologies related to EEG-HS that could be developed for use in the clinic as well as technical limitations to be considered in these proposed settings.


1999 ◽  
Vol 354 (1387) ◽  
pp. 1229-1238 ◽  
Author(s):  
Alvaro Pascual-Leone

Transcranial magnetic stimulation (TMS) provides a non-invasive method of induction of a focal current in the brain and transient modulation of the function of the targeted cortex. Despite limited understanding about focality and mechanisms of action, TMS provides a unique opportunity of studying brain-behaviour relations in normal humans. TMS can enhance the results of other neuroimaging techniques by establishing the causal link between brain activity and task performance, and by exploring functional brain connectivity.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Andreas A. Ioannides ◽  
Stavros I. Dimitriadis ◽  
George A. Saridis ◽  
Marotesa Voultsidou ◽  
Vahe Poghosyan ◽  
...  

How the brain works is nowadays synonymous with how different parts of the brain work together and the derivation of mathematical descriptions for the functional connectivity patterns that can be objectively derived from data of different neuroimaging techniques. In most cases static networks are studied, often relying on resting state recordings. Here, we present a quantitative study of dynamic reconfiguration of connectivity for event-related experiments. Our motivation is the development of a methodology that can be used for personalized monitoring of brain activity. In line with this motivation, we use data with visual stimuli from a typical subject that participated in different experiments that were previously analyzed with traditional methods. The earlier studies identified well-defined changes in specific brain areas at specific latencies related to attention, properties of stimuli, and tasks demands. Using a recently introduced methodology, we track the event-related changes in network organization, at source space level, thus providing a more global and complete view of the stages of processing associated with the regional changes in activity. The results suggest the time evolving modularity as an additional brain code that is accessible with noninvasive means and hence available for personalized monitoring and clinical applications.


2019 ◽  
Vol 19 (1S) ◽  
pp. 5-7
Author(s):  
D S Orlov

“The natural healing force within each one of us is the greatest force in getting well.” Hippocrates Prof. G.F. Solomon was one of the first scientists to hypothesize that the relationship between brain activity and the body’s immune system can be important for determining health and influencing the course of the disease and its outcome. John Solomon is the founder of psychoneuroimmunology, an interdisciplinary field of research into the interaction of the brain, behavior, and immune system that has played a key role in the study of behavioral and biological mechanisms that link psychosocial factors, health, and disease. His research helped to found a new area of knowledge - psychoneuroimmunology, which aims to uncover the mechanisms by which the brain is able to influence the functions of the immune system.


2021 ◽  
Vol 15 ◽  
Author(s):  
Gerald A. Maguire ◽  
Bo Ram Yoo ◽  
Shahriar SheikhBahaei

Stuttering is a childhood onset fluency disorder that leads to impairment in speech. A randomized, double-blinded placebo-controlled study was conducted with 10 adult subjects to observe the effects of risperidone (a dopamine receptor 2/serotonin receptor 2 antagonist) on brain metabolism, using [18F] deoxyglucose as the marker. At baseline and after 6 weeks of taking risperidone (0.5–2.0 mg/day) or a placebo pill, participants were assigned to a solo reading aloud task for 30 min and subsequently underwent a 90-min positron emission tomography scan. Paired t-tests were performed to compare the pre-treatment vs. post-treatment in groups. After imaging and analysis, the blind was broken, which revealed an equal number of subjects of those on risperidone and those on placebo. There were no significant differences in the baseline scans taken before medication randomization. However, scans taken after active treatment demonstrated higher glucose uptake in the specific regions of the brain for those in the risperidone treatment group (p < 0.05). Risperidone treatment was associated with increased metabolism in the left striatum, which consists of the caudate and putamen, and the Broca’s area. The current study strengthens previous research that suggests the role of elevated dopamine activity and striatal hypometabolism in stuttering. We propose that the mechanism of risperidone’s action in stuttering, in part, involves increased metabolism of striatal astrocytes. We conclude that using neuroimaging techniques to visualize changes in the brain of those who stutter can provide valuable insights into the pathophysiology of the disorder and guide the development of future interventions.


2010 ◽  
Vol 24 (2) ◽  
pp. 131-135 ◽  
Author(s):  
Włodzimierz Klonowski ◽  
Pawel Stepien ◽  
Robert Stepien

Over 20 years ago, Watt and Hameroff (1987 ) suggested that consciousness may be described as a manifestation of deterministic chaos in the brain/mind. To analyze EEG-signal complexity, we used Higuchi’s fractal dimension in time domain and symbolic analysis methods. Our results of analysis of EEG-signals under anesthesia, during physiological sleep, and during epileptic seizures lead to a conclusion similar to that of Watt and Hameroff: Brain activity, measured by complexity of the EEG-signal, diminishes (becomes less chaotic) when consciousness is being “switched off”. So, consciousness may be described as a manifestation of deterministic chaos in the brain/mind.


2010 ◽  
Vol 24 (2) ◽  
pp. 76-82 ◽  
Author(s):  
Martin M. Monti ◽  
Adrian M. Owen

Recent evidence has suggested that functional neuroimaging may play a crucial role in assessing residual cognition and awareness in brain injury survivors. In particular, brain insults that compromise the patient’s ability to produce motor output may render standard clinical testing ineffective. Indeed, if patients were aware but unable to signal so via motor behavior, they would be impossible to distinguish, at the bedside, from vegetative patients. Considering the alarming rate with which minimally conscious patients are misdiagnosed as vegetative, and the severe medical, legal, and ethical implications of such decisions, novel tools are urgently required to complement current clinical-assessment protocols. Functional neuroimaging may be particularly suited to this aim by providing a window on brain function without requiring patients to produce any motor output. Specifically, the possibility of detecting signs of willful behavior by directly observing brain activity (i.e., “brain behavior”), rather than motoric output, allows this approach to reach beyond what is observable at the bedside with standard clinical assessments. In addition, several neuroimaging studies have already highlighted neuroimaging protocols that can distinguish automatic brain responses from willful brain activity, making it possible to employ willful brain activations as an index of awareness. Certainly, neuroimaging in patient populations faces some theoretical and experimental difficulties, but willful, task-dependent, brain activation may be the only way to discriminate the conscious, but immobile, patient from the unconscious one.


1999 ◽  
Vol 13 (2) ◽  
pp. 117-125 ◽  
Author(s):  
Laurence Casini ◽  
Françoise Macar ◽  
Marie-Hélène Giard

Abstract The experiment reported here was aimed at determining whether the level of brain activity can be related to performance in trained subjects. Two tasks were compared: a temporal and a linguistic task. An array of four letters appeared on a screen. In the temporal task, subjects had to decide whether the letters remained on the screen for a short or a long duration as learned in a practice phase. In the linguistic task, they had to determine whether the four letters could form a word or not (anagram task). These tasks allowed us to compare the level of brain activity obtained in correct and incorrect responses. The current density measures recorded over prefrontal areas showed a relationship between the performance and the level of activity in the temporal task only. The level of activity obtained with correct responses was lower than that obtained with incorrect responses. This suggests that a good temporal performance could be the result of an efficacious, but economic, information-processing mechanism in the brain. In addition, the absence of this relation in the anagram task results in the question of whether this relation is specific to the processing of sensory information only.


Author(s):  
V. A. Maksimenko ◽  
A. A. Harchenko ◽  
A. Lüttjohann

Introduction: Now the great interest in studying the brain activity based on detection of oscillatory patterns on the recorded data of electrical neuronal activity (electroencephalograms) is associated with the possibility of developing brain-computer interfaces. Braincomputer interfaces are based on the real-time detection of characteristic patterns on electroencephalograms and their transformation  into commands for controlling external devices. One of the important areas of the brain-computer interfaces application is the control of the pathological activity of the brain. This is in demand for epilepsy patients, who do not respond to drug treatment.Purpose: A technique for detecting the characteristic patterns of neural activity preceding the occurrence of epileptic seizures.Results:Using multi-channel electroencephalograms, we consider the dynamics of thalamo-cortical brain network, preceded the occurrence of an epileptic seizure. We have developed technique which allows to predict the occurrence of an epileptic seizure. The technique has been implemented in a brain-computer interface, which has been tested in-vivo on the animal model of absence epilepsy.Practical relevance:The results of our study demonstrate the possibility of epileptic seizures prediction based on multichannel electroencephalograms. The obtained results can be used in the development of neurointerfaces for the prediction and prevention of seizures of various types of epilepsy in humans. 


Sign in / Sign up

Export Citation Format

Share Document