Antioxidant Activity and Protective Effect against Oxidative Stress on Hippocampal HT22 Cells of Tea Seed Oil

2018 ◽  
Vol 24 (1) ◽  
pp. 53-59
Author(s):  
Jong Min Kim ◽  
Seon Kyeong Park ◽  
Jin Yong Kang ◽  
Seong-kyeong Bae ◽  
Ga-Hee Jeong ◽  
...  
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Ke-Xin Zhang ◽  
Jian-Bin Tan ◽  
Cheng-Liang Xie ◽  
Rong-Bo Zheng ◽  
Xiao-Dan Huang ◽  
...  

Herbal tea with antioxidant ingredients has gained increasing attention in the field of functional foods due to their amelioration potential in aging-related diseases. Wanglaoji herbal tea (WHT) is a kind of traditional beverage made from herbal materials. This study was performed to investigate its antioxidant activity and identify its protective effect on a H2O2-induced cell damage model. In this study, we identified six kinds of phenolic acids with antioxidant activity in WHT, among which rosmarinic acid had the highest content and the highest contribution ratio to the antioxidant activity of WHT. Moreover, compared with the H2O2-induced damage group, the WHT treatment group can significantly increase the viability of cells and decrease the ratio of senescence-associated β-galactosidase-positive cells, intracellular malondialdehyde levels, and the percentage of G1 phase. Furthermore, enrichment analysis of differentially expressed genes revealed that heme oxygenase1 (HMOX1) was a key gene for protective effect of WHT on oxidative stress-induced cell damage. Thus, WHT exerted protective effects not only by scavenging reactive oxygen species but also by inducing the expression of cytoprotective genes by activating the HMOX1 pathway, which showed that WHT had a potential of promoting health by reducing oxidative stress-induced cell damage.


2020 ◽  
Vol 1 (2) ◽  
pp. 43
Author(s):  
Andri Muhrim Siddiq ◽  
Muhammad In'am Ilmiawan ◽  
Mitra Handini

Background: The chemotherapeutic use of cisplatin (CP) is restricted because of its hepatotoxicity induced by oxidative stress. Malondialdehyde (MDA) is a secondary product of lipid peroxidation as a biomarker of oxidative stress. Individual administration of black seed oil (BSO) or honey (H) demonstrated hepatoprotective effect in rats. Interaction of both substances when administrated as combination can be evaluated using combination index (CI) to quantitatively depict synergism (CI<1), additive (CI=1) and antagonism effect (CI>1). Objective: to know the combination effect of BSO and honey on rat liver tissue given CP exposure. Methods: This study used 30 rats were divided into 10 groups. Normal group (N); Negative control group (NC); P1-P4 groups were administerated BSO (1 and 2 mL/kg) and honey (3.7 and 7.4 mL/kg); P5-P8 groups were combination of BSO and H. P1-P8 groups were given BSO and honey orally for 21 days. On the 18th day, NC and P1-P8 groups were given CP 8 mg/kg intraperitoneally, while the N group was given NaCl 0.9% 1 mL/kg intraperitoneally. Result: Malondialdehyde (MDA) levels were found to be lower in P1-P8 groups compared to negative control group and P6 and P7 groups have levels equivalent to MDA levels of normal control group (p > 0.05). Conclusion: Combination of BSO and honey provides a protective effect on cisplatin-induced rat liver tissue damage indicated by reduced MDA levels, but all combination group showed antagonism effect.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5149
Author(s):  
Roberto O. Ybañez-Julca ◽  
Daniel Asunción-Alvarez ◽  
Ivan M. Quispe-Díaz ◽  
Javier Palacios ◽  
Jorge Bórquez ◽  
...  

Mangifera indica Linn popularly known as mango is used in folk medicine to treat gastrointestinal disorders. The aim of this study was to identify the metabolomic composition of lyophilized extract of mango leaf (MIE), to evaluate the antioxidant activity on several oxidative stress systems (DPPH, FRAP, TBARS, and ABTS), the spasmolytic and antispasmodic activity, and intestinal protective effect on oxidative stress induced by H2O2 in rat ileum. Twenty-nine metabolites were identified and characterized based on their ultra-high-performance liquid chromatography (UHPLC) high-resolution orbitrap mass spectrometry, these include: benzophenone derivatives, xanthones, phenolic acids, fatty acids, flavonoids and procyanidins. Extract demonstrated a high antioxidant activity in in-vitro assays. MIE relaxed (p < 0.001) intestinal segments of rat pre-contracted with acetylcholine (ACh) (10−5 M). Pre-incubation of intestinal segments with 100 µg/mL MIE significantly reduced (p < 0.001) the contraction to H2O2. Similar effects were observed with mangiferin and quercetin (10−5 M; p < 0.05) but not for gallic acid. Chronic treatment of rats with MIE (50 mg/kg) for 28 days significantly reduced (p < 0.001) the H2O2-induced contractions. MIE exhibited a strong antioxidant activity, spasmolytic and antispasmodic activity, which could contribute to its use as an alternative for the management of several intestinal diseases related to oxidative stress.


2015 ◽  
Vol 49 (2) ◽  
pp. 83-95 ◽  
Author(s):  
Seon-Kyeong Park ◽  
◽  
Dong-Eun Jin ◽  
Chang-Hyeon Park ◽  
Tae-Wan Seung ◽  
...  

2021 ◽  
Vol 63 (6) ◽  
pp. 63-67
Author(s):  
Thi Phuong Thao Pham ◽  
◽  
Trung Khoa Giang ◽  
Hong Son Vu ◽  
◽  
...  

This research was carried out on Tea (Camellia sinensisO. Kuntze.) seeds (containing 22.01% oil) harvested from Trung du tea trees varieties, cultivated in Phu Tho, Vietnam to select the most suitable processing methods which enhance the high antioxidant activity of the oil in the seed oil extraction. The objective of this research is to study the effects of particle size, material/solvent ratio, temperature, time, speed of solvent movement, and extraction cycle on antioxidant properties of the oil (by analysing IC50, total polyphenol content, total carotenoid, and total tocopherol value). The suitable extraction conditions were determined as follows: particle size was 0.25-0.5 mm, the solid-solvent ratio was 1/8-1/10, the extraction temperature was 35-45oC, the extraction time was 7-9h, speed of solvent movement was 200-250 r/m and the extraction cycle was two times. The tea seed oil extracted under the suitable conditions had the DPPH radical scavenging activity (IC50), total polyphenol content, total carotene, and total tocopherol of 62.19 mg/ml, 4.45 mgGAE/g dry weight, 89 mg/kg, and 710 mg/kg, respectively. The high content of antioxidants makes tea seed oil has a good antioxidant capacity, high oxidation stability, and relatively long shelf life. Therefore, research on using wasted tea seed sources to extract oil has great potential for the vegetable oil industry and a high potential of application in food technology.


Sign in / Sign up

Export Citation Format

Share Document