scholarly journals WORKING PROCESS OF INTERNAL COMBUSTION ENGINE RUNNING ON ENRICHED HYDROGEN GASOLINE-AIR MIXTURE

Author(s):  
M. S. Assad ◽  
O. G. Penyazkov ◽  
I. N. Tarasenko

The effect of hydrogen additives on the working process of a piston-type gasoline engine is studied. The indicator diagram has been built, and the operation of the piston engine on gasoline-air mixtures enriched with hydrogen in the amount of 0…20 % of the volume of air entering the engine has been analyzed. The possibility of obtaining satisfactory parameters when the engine works on gasoline with hydrogen additives is shown. The dynamics of the engine performance is studied depending on the oxidant excess coefficient. It has been established that the oxidizer excess ratio at which the maximum indicator pressure is reached is moved to the zone of poor mixtures. When the mixture is enriched with hydrogen in the amount of 20 % of the air volume, the maximum of indicator pressure pimax = 5.3...5.8 MPa is reached at α = 1.15...1.25, while for 10 % hydrogen addition the maximum pimax = 4.9...5.2 MPa takes place at α = 1.05...1.10 against pimax = 4.7...5.1 MPa at α = 0.90...0.95 for pure gasoline. According to the indicator diagram, the dynamics of intra-cylinder parameters is studied when the mixture is enriched with hydrogen. Thus, with a 20 % hydrogen addition the mean indicator pressure decreases by 12...19 %, despite a slight increase in the maximum cycle pressure (3...18 %), compared with gasoline operation, which leads to a proportional decrease in both the engine indicator power, and the indicator efficiency.

2012 ◽  
Vol 490-495 ◽  
pp. 257-261
Author(s):  
Shui Fa Liu ◽  
Zhong Gao Yang ◽  
Wei Bin Feng

The shortage of oil resources and aggravation of environmental pollution drive the whole world look for new alternative fuel for vehicles. By virtue of the renewability and burning cleanability, ethanol has become one of the research priorities for alternative fuel for vehicles at home and abroad. Based on the GT-Power software, a model of the internal combustion engine was established, the working process of the engine using ethanol gasoline as the fuel was simulated, and the experiment platform was established to verify the validity of the simulation model.


Features of the design and operation of engines with direct injection of gasoline into the cylinders and layer-by-layer mixing are considered. Opportunities of improving the engine fuel efficiency and exhaust gases toxicity characteristics with this organization of the working process are shown. Problems arising when organizing such a working process of a gasoline engine are noted. Keywords internal combustion engine; diesel engine; gasoline engine; direct injection; layer-by-layer mixing; layered charge; lean mixture


2014 ◽  
Vol 660 ◽  
pp. 436-441
Author(s):  
Halim Razali ◽  
K. Sopian ◽  
S. Mat

The requirement of hydrogen in the transport system is indispensable nowadays. Especially to fulfill the requirement from the transports and industry sector related with green technology implementation. As an alternative, a research has been conducted from a technical aspect on the profitability of using hydrogen onboard as fuel for internal combustion engine. Applications using a mixture of Gasoline with hydrogen (G+H2) can be used to increase the combustion performance especially on the reduction of hydrocarbon and carbon monoxide. In this study hydrogen as an alternative fuel in four-stroke motorcycles has been tested using a chassis dynamometer model ATV Inertial Dyno, 054-500-1K. Hydrogen requirement in the petrol mixing ratio is dependent on the operating system of the engine ignition system which is controlled by hydrogen pressure in the cylinder. Three stages of load test on the engine performance have been conducted on the chassis dynamometer, namely, load test L0 is equal 0 ampere (L0), load test L1 is equal 1 ampere, and load test L2 is equal 2. During the tests L0, L1 and L2, the average hydrocarbon gas readings decreased by 34 % and 58.2% (L0), 27.4% (L1) and 16.7% (L2) to 46ppm, 85ppm and 95ppm respectively versus gasoline engine 110ppm, 117ppm and 114ppm. And the overall average results of this study showed a reduction of carbon monoxide by 33 %. It proves the use of hydrogen (AL + HCl) in the stoichiometric ratio helps combustion when the oxygen content in the air and fuel mixture is not adequate especially for vehicles using gasoline as a fuel.


2018 ◽  
Vol 187 ◽  
pp. 03002
Author(s):  
Krissadang Sookramoon

This paper presents the internal combustion engine power generation using syngas from the updraft biomass gasifier as a fuel. 3 types of fuel such as Golden shower tree wood chip, charcoal, and gasohol 91 were tested for the engine running. The experiment was performed on July 25-26, 2017 at Faculty of Industrial Technology Vallaya Alongkorn Rajabhat University Pathum Tani Thailand. Data on the performance of the engines fueled with producer gas and gasohol 91 is presented. The experiment was carried out by using a four-stroke 13 HP gasoline engine coupled with a generator as a load in producing electricity. The carburetor was modified for fuel gas running by loading 7 kg/batch of Golden shower chips and charcoal for syngas producing and the engine performance was measured. The results showed that, the engine power was 110.125 W, 115.425 W, and 128.038 W, while using a golden shower chip, charcoal, and gasohol 91 as the fuel, respectively. The generator efficiency is 80% therefore the generator power reduces 20%. The test indicated that golden shower chips could produce higher quality of syngas than charcoal but the engine power has less power than fueled with gasohol 91.


2019 ◽  
Vol 8 (4) ◽  
pp. 6145-6148

Gasoline ignition system in automobiles is still one of the world's main fuel consumption today. The spark plug is one of the key features of a gasoline engine during the combustion process. The incompatibility between the width of the plug and the combustion engine fuel used causes a backfire and a knock. The spark plug gap had therefore been investigated in order to improve the engine's performance by controlling the combustion process. The main objective of this study is to analyze the effect of side gapping spark plug engine performance and emission. The selected type of spark plug being used for this study is cooper spark plug. This study has examined the parameters of side gapping spark plug gap (0.7 mm, 0.8 mm, 1.0 mm and 1.2 mm) and of revolution per minutes RPM (1000 rpm, 1500 rpm, 2000 rpm, 2000 rpm, 2500 rpm, 3000rpm, 3500 rpm, 4000 rpm, 4500 rpm and 5000 rpm) also the emission effect in term of carbon monoxide (CO), hydrocarbon (HC) and oxygen (O2 ). In this test, performance and power are showed an increment of side gapping spark plug. Other than that, this study is also showed positive results where the reduction in the percentage of opacity is demonstrated. Since the result has obtained for engine performance and emission showed positive outcome, this study can be used in future and highly recommended for continue with different type of spark plug.


Author(s):  
Serhii Kravchenko ◽  
Oleg Linkov ◽  
Maxim Shelestov ◽  
Alexander Bekaryuk ◽  
Eduard Bozhko

Simulation of the working process of an internal combustion engine is the basis for all further calculations and studies of the engine. Of particular relevance is the availability of an adequate mathematical model of the engine process due to the fact that due to the trend of continuous improvement of engine performance, it is necessary to take into account many influencing factors to obtain a satisfactory result. The most complex and dependent on many physicochemical parameters is the process of combustion of fuel in the engine. Models of combustion in diesel engines can be divided into three groups: detailed models; empirical and semipemirical models. The analysis of world experience in research and mathematical modeling of combustion process in internal combustion engines is performed in the work. The advantages and disadvantages of different mathematical models are indicated. It is proposed to use a semi-empirical mathematical model of combustion which describes the differential characteristic of the combustion rate by two curves corresponding to the periods of the first flash and diffusion combustion. Use of such model simplifies performance of calculations and at the same time allows to receive qualitative results considering many factors of influence.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1322
Author(s):  
Simeon Iliev

Air pollution, especially in large cities around the world, is associated with serious problems both with people’s health and the environment. Over the past few years, there has been a particularly intensive demand for alternatives to fossil fuels, because when they are burned, substances that pollute the environment are released. In addition to the smoke from fuels burned for heating and harmful emissions that industrial installations release, the exhaust emissions of vehicles create a large share of the fossil fuel pollution. Alternative fuels, known as non-conventional and advanced fuels, are derived from resources other than fossil fuels. Because alcoholic fuels have several physical and propellant properties similar to those of gasoline, they can be considered as one of the alternative fuels. Alcoholic fuels or alcohol-blended fuels may be used in gasoline engines to reduce exhaust emissions. This study aimed to develop a gasoline engine model to predict the influence of different types of alcohol-blended fuels on performance and emissions. For the purpose of this study, the AVL Boost software was used to analyse characteristics of the gasoline engine when operating with different mixtures of ethanol, methanol, butanol, and gasoline (by volume). Results obtained from different fuel blends showed that when alcohol blends were used, brake power decreased and the brake specific fuel consumption increased compared to when using gasoline, and CO and HC concentrations decreased as the fuel blends percentage increased.


Sign in / Sign up

Export Citation Format

Share Document