scholarly journals Effect of Side Gapping Spark Plug on Engine Performance and Emission

2019 ◽  
Vol 8 (4) ◽  
pp. 6145-6148

Gasoline ignition system in automobiles is still one of the world's main fuel consumption today. The spark plug is one of the key features of a gasoline engine during the combustion process. The incompatibility between the width of the plug and the combustion engine fuel used causes a backfire and a knock. The spark plug gap had therefore been investigated in order to improve the engine's performance by controlling the combustion process. The main objective of this study is to analyze the effect of side gapping spark plug engine performance and emission. The selected type of spark plug being used for this study is cooper spark plug. This study has examined the parameters of side gapping spark plug gap (0.7 mm, 0.8 mm, 1.0 mm and 1.2 mm) and of revolution per minutes RPM (1000 rpm, 1500 rpm, 2000 rpm, 2000 rpm, 2500 rpm, 3000rpm, 3500 rpm, 4000 rpm, 4500 rpm and 5000 rpm) also the emission effect in term of carbon monoxide (CO), hydrocarbon (HC) and oxygen (O2 ). In this test, performance and power are showed an increment of side gapping spark plug. Other than that, this study is also showed positive results where the reduction in the percentage of opacity is demonstrated. Since the result has obtained for engine performance and emission showed positive outcome, this study can be used in future and highly recommended for continue with different type of spark plug.

2021 ◽  
pp. 146808742110464
Author(s):  
Yang Hua

Ether and ester fuels can work in the existing internal combustion (IC) engine with some important advantages. This work comprehensively reviews and summarizes the literatures on ether fuels represented by DME, DEE, DBE, DGM, and DMM, and ester fuels represented by DMC and biodiesel from three aspects of properties, production and engine application, so as to prove their feasibility and prospects as alternative fuels for compression ignition (CI) and spark ignition (SI) engines. These studies cover the effects of ether and ester fuels applied in the form of single fuel, mixed fuel, dual-fuel, and multi-fuel on engine performance, combustion and emission characteristics. The evaluation indexes mainly include torque, power, BTE, BSFC, ignition delay, heat release rate, pressure rise rate, combustion duration, exhaust gas temperature, CO, HC, NOx, PM, and smoke. The results show that ethers and esters have varying degrees of impact on engine performance, combustion and emissions. They can basically improve the thermal efficiency of the engine and reduce particulate emissions, but their effects on power, fuel consumption, combustion process, and CO, HC, and NOx emissions are uncertain, which is due to the coupling of operating conditions, fuel molecular structure, in-cylinder environment and application methods. By changing the injection strategy, adjusting the EGR rate, adopting a new combustion mode, adding improvers or synergizing multiple fuels, adverse effects can be avoided and the benefits of oxygenated fuel can be maximized. Finally, some challenges faced by alternative fuels and future research directions are analyzed.


Author(s):  
M Canakci

Biodiesel is an alternative diesel fuel that can be produced from renewable feedstocks such as vegetable oils, waste frying oils, and animal fats. It is an oxygenated, non-toxic, sulphur-free, biodegradable, and renewable fuel. Many engine manufacturers have included this fuel in their warranties since it can be used in diesel engines without significant modification. However, the fuel properties such as cetane number, heat of combustion, specific gravity, and kinematic viscosity affect the combustion, engine performance and emission characteristics. In this study, the engine performance and emissions characteristics of two different petroleum diesel fuels (No. 1 and No. 2 diesel fuels) and biodiesel from soybean oil and its 20 per cent blends with No. 2 diesel fuel were compared. The results showed that the engine performance of the neat biodiesel and its blend was similar to that of No. 2 diesel fuel with nearly the same brake fuel conversion efficiency, and slightly higher fuel consumption. CO2 emission for the biodiesel was slightly higher than for the No. 2 diesel fuel. Compared with diesel fuels, biodiesel produced lower exhaust emissions, except NO x.


Author(s):  
Derek Johnson ◽  
Marc Besch ◽  
Nathaniel Fowler ◽  
Robert Heltzel ◽  
April Covington

Emissions compliance is a driving factor for internal combustion engine research pertaining to both new and old technologies. New standards and compliance requirements for off-road spark ignited engines are currently under review and include greenhouse gases. To continue operation of legacy natural gas engines, research is required to increase or maintain engine efficiency, while reducing emissions of carbon monoxide, oxides of nitrogen, and volatile organic compounds such as formaldehyde. A variety of technologies can be found on legacy, large-bore natural gas engines that allow them to meet current emissions standards — these include exhaust after-treatment, advanced ignition technologies, and fuel delivery methods. The natural gas industry uses a variety of spark plugs and tuning methods to improve engine performance or decrease emissions of existing engines. The focus of this study was to examine the effects of various spark plug configurations along with spark timing to examine any potential benefits. Spark plugs with varied electrode diameter, number of ground electrodes, and heat ranges were evaluated against efficiency and exhaust emissions. Combustion analyses were also conducted to examine peak firing pressure, location of peak firing pressure, and indicated mean effective pressure. The test platform was an AJAX-E42 engine. The engine has a bore and stroke of 0.216 × 0.254 meters (m), respectively. The engine displacement was 9.29 liters (L) with a compression ratio of 6:1. The engine was modified to include electronic spark plug timing capabilities along with a mass flow controller to ensure accurate fuel delivery. Each spark plug configuration was examined at ignition timings of 17, 14, 11, 8, and 5 crank angle degrees before top dead center. The various configurations were examined to identify optimal conditions for each plug comparing trade-offs among brake specific fuel consumption, oxides of nitrogen, methane, formaldehyde, and combustion stability.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3857 ◽  
Author(s):  
Arkadiusz Jamrozik ◽  
Wojciech Tutak ◽  
Karol Grab-Rogaliński

One of the possibilities to reduce diesel fuel consumption and at the same time reduce the emission of diesel engines, is the use of alternative gaseous fuels, so far most commonly used to power spark ignition engines. The presented work concerns experimental research of a dual-fuel compression-ignition (CI) engine in which diesel fuel was co-combusted with CNG (compressed natural gas). The energy share of CNG gas was varied from 0% to 95%. The study showed that increasing the share of CNG co-combusted with diesel in the CI engine increases the ignition delay of the combustible mixture and shortens the overall duration of combustion. For CNG gas shares from 0% to 45%, due to the intensification of the combustion process, it causes an increase in the maximum pressure in the cylinder, an increase in the rate of heat release and an increase in pressure rise rate. The most stable operation, similar to a conventional engine, was characterized by a diesel co-combustion engine with 30% and 45% shares of CNG gas. Increasing the CNG share from 0% to 90% increases the nitric oxide emissions of a dual-fuel engine. Compared to diesel fuel supply, co-combustion of this fuel with 30% and 45% CNG energy shares contributes to the reduction of hydrocarbon (HC) emissions, which increases after exceeding these values. Increasing the share of CNG gas co-combusted with diesel fuel, compared to the combustion of diesel fuel, reduces carbon dioxide emissions, and almost completely reduces carbon monoxide in the exhaust gas of a dual-fuel engine.


2008 ◽  
Vol 20 (1) ◽  
pp. 75-81 ◽  
Author(s):  
Kouki Yamaji ◽  
◽  
Hirokazu Suzuki ◽  

With progress in internal combustion engine fuel economy, variable cylinder systems have attracted attention. We measured fuel consumption in cylinder cutoff by stopping the injector alone, collected data changing the location and number of cutoff cylinders and when varying the cutoff cylinder, and compared the difference in fuel cost reduction. A transistor is inserted serially into the injector control circuit of the electronic control unit (ECU). By controlling the transistor via microcomputer, the injector is turned on or off independently from ECU control in obtain cylinder cutoff. The amount of fuel consumption is measured using enhancement mode of a failure diagnostic device based on the OBD II standard to collect injection time and rotational speed of the injector for a predetermined time and calculated based on this data. We confirmed that by stopping the injector alone, fuel consumption was reduced 6 to 22% and is reduced when the cutoff cylinder is varied.


2018 ◽  
Vol 1 (1) ◽  
pp. 42
Author(s):  
Fatkur Rhohman ◽  
Susdi Subandriyo ◽  
Hesti Istiqlaliyah

In automotive, many various modifications are made to improve engine performance. One that is done is to maximize the combustion that occurs in the combustion chamber. By maximizing the ignition system in the combustion process, it is expected to enlarge sparks from spark plugs. One of the components affecting the combustion process is Magnet, serves to generate electricity that will become a high voltage electric current and allow the occurrence of spark jumps on the spark plug. In this study, the independent variable is the modified tregger magnet which is reversed 0.50, to 9.50 and 90. in general there is no significant difference. Fcount value for result on magnetic trigger type = 3.00 <F (0.05; 2.24) = 3.40 (rejected H0) means reversing the 90 and 9.50 magnetic triggers does not significantly influence. In addition, Fcount for 6000, 7000, 8000 rpm engine yield = 1.00 <F (0.05; 2.24) = 3.40 (Rejected H0) means the engine's rotation rate has no significant effect. So there is no effect of fuel consumption on the modified magnetic trigger, nor at rpm 6000, rpm 7000 and rpm 8000.


2019 ◽  
Vol 178 (3) ◽  
pp. 27-37 ◽  
Author(s):  
Denys STEPANENKO ◽  
Zbigniew KNEBA

The mathematical description of combustion process in the internal combustion engines is a very difficult task, due to the variety of phenomena that occurring in the engine from the moment when the fuel-air mixture ignites up to the moment when intake and exhaust valves beginning open. Modeling of the combustion process plays an important role in the engine simulation, which allows to predict in-cylinder pressure during the combustion, engine performance and environmental impact with high accuracy. The toxic emissions, which appears as a result of fuels combustion, are one of the main environmental problem and as a result the air pollutant regulations are increasingly stringent, what makes the investigation of the combustion process to be a relevant task.


Author(s):  
Bogdan Manolin JURCHIȘ

In this paper, the main objective of using numerical simulation was to highlight and analyse details that are very difficult to highlight through experimental tests. The development of the simulation model was also done for predictive purposes. In other words, after validation of the model, it can be used to estimate the filter load in other conditions than the experimental ones, respectively to evaluate how the particulate filter affects the operation of the internal combustion engine. In order to achieve the desired result, the creation of the model was done in two stages, the first stage was the creation of a model containing all the components of the engine, except the particle filter in order to identify the parameters of the combustion process and pollutant emissions - model validated on the basis of the indicated pressure curves, and the second stage was to complete the initial model with a particle filter and validate it from the point of view of the pressure drop, respectively of the engine performance, the aim was to obtain a trend, respectively values similar to the experimental ones.


2021 ◽  
Vol 11 (23) ◽  
pp. 11502
Author(s):  
Jun Cong Ge ◽  
Sam Ki Yoon ◽  
Jun Hee Song

Vegetable oil as an alternative fuel for diesel engine has attracted much attention all over the world, and it is also expected to achieve the goal of global carbon neutrality in the future. Although the product after transesterification, biodiesel, can greatly reduce the viscosity compared with vegetable oil, the high production cost is one of the reasons for restricting its extensive development. In addition, based on the current research on biodiesel in diesel engines, it has been almost thoroughly investigated. Therefore, in this study, crude palm oil (CPO) was directly used as an alternative fuel to be blended with commercial diesel. The combustion, engine performance and emissions were investigated on a 4-cylinder, turbocharged, common rail direct injection (CRDI) diesel engine fueled with different diesel-CPO blends according to various engine loads. The results show that adding CPO to diesel reduces the maximum in-cylinder pressure and maximum heat release rate to 30 Nm and 60 Nm. The most noteworthy finding is that the blend fuels reduce the emissions of hydrocarbons (HC), nitrogen oxides (NOx) and smoke, simultaneously. On the whole, diesel fuel blended with 30% CPO by volume is the best mixing ratio based on engine performance and emission characteristics.


Sign in / Sign up

Export Citation Format

Share Document