scholarly journals X-ray genetic phenotype of congenital disease development

Author(s):  
S. L. Kabak ◽  
V. V. Zatochnaya ◽  
N. O. Zhizhko-Mikhasevich

The aim of the study is to describe the radiological phenotype of vertebral malformations in congenital scoliosis and to discuss the possible mechanisms of morphogenesis of some of these anomalies. The article describes 5 cases of complete or partial splitting in the sagittal plane of the body of one of the thoracic vertebrae (butterfly-shaped vertebra). The anterior vertebral cleft was combined with other congenital vertebral anomalies: block of vertebra, hemivertebrae, spina bifida posterior. All patients had scoliosis with right-sided or left-sided curves. In the human fetuses of the first trimester of gestation without visible malformations in the cartilaginous anlages of the thoracic vertebral bodies we revealed the presence of one o three centers of ossification, and in the fetus with exensephaly – the lack of the intervertebral disc anlage between the bodies C2-C3. According to the published data, the etiology of congenital vertebral anomalies is multifactorial. In the pathogenesis of this pathology, there is a violation of local blood flow due to the anomalous course of intersegmental arteries and as a consequence – a complete or partial separation of adjacent somites or associated mesenchyme. According to the published data, a possible cause of the anterior cleft may be untimely an involution of cartilage canals, the growth of which in the cartilaginous anlage of the vertebral body precedes the appearance of the ossification center. The absence of the intervertebral disk at a considerable length between the cartilaginous anlages of bodies 2 and 3 of the cervical vertebrae in the human fetus with exencephaly indicates a close relationship between the axial skeleton and the neural tube.

Author(s):  
Martin E. Atkinson

The locomotor system comprises the skeleton, composed principally of bone and cartilage, the joints between them, and the muscles which move bones at joints. The skeleton forms a supporting framework for the body and provides the levers to which the muscles are attached to produce movement of parts of the body in relation to each other or movement of the body as a whole in relation to its environment. The skeleton also plays a crucial role in the protection of internal organs. The skeleton is shown in outline in Figure 2.1A. The skull, vertebral column, and ribs together constitute the axial skeleton. This forms, as its name implies, the axis of the body. The skull houses and protects the brain and the eyes and ears; the anatomy of the skull is absolutely fundamental to the understanding of the structure of the head and is covered in detail in Section 4. The vertebral column surrounds and protects the spinal cord which is enclosed in the spinal canal formed by a large central canal in each vertebra. The vertebral column is formed from 33 individual bones although some of these become fused together. The vertebral column and its component bones are shown from the side in Figure 2.1B. There are seven cervical vertebrae in the neck, twelve thoracic vertebrae in the posterior wall of the thorax, five lumbar vertebrae in the small of the back, five fused sacral vertebrae in the pelvis, and four coccygeal vertebrae—the vestigial remnants of a tail. Intervertebral discs separate individual vertebrae from each other and act as a cushion between the adjacent bones; the discs are absent from the fused sacral vertebrae. The cervical vertebrae are small and very mobile, allowing an extensive range of neck movements and hence changes in head position. The first two cervical vertebrae, the atlas and axis, have unusual shapes and specialized joints that allow nodding and shaking movements of the head on the neck. The thoracic vertebrae are relatively immobile. combination of thoracic vertebral column, ribs, and sternum form the thoracic cage that protects the thoracic organs, the heart, and lungs and is intimately involved in ventilation (breathing).


Author(s):  
Martin E. Atkinson

The surface anatomies of the face and neck and their supporting structures that can be palpated have been described in Chapter 20. It is now time to move to the structures that lie under the skin but which cannot be identified by touch starting with the neck and moving up on to the face and scalp. The cervical vertebral column comprises the seven cervical vertebrae and the intervening intervertebral discs. These have the same basic structure as the thoracic vertebrae described in Section 10.1.1. Examine the features of the cervical vertebra shown in Figure 23.1 and compare it with the thoracic vertebra shown in Figure 10.3. You will see that cervical vertebrae have a small body and a large vertebral foramen. They also have two distinguishing features, a bifid spinous process and a transverse foramen, piercing each transverse process; the vertebral vessels travel through these foramina. The first and second vertebrae are modified. The first vertebra, the atlas, has no body. Instead, it has two lateral masses connected by anterior and posterior arches. The lateral masses have concave superior facets which articulate with the occipital condyles where nodding movements of the head take place at the atlanto-occipital joints. The second cervical vertebra, the axis, has a strong odontoid process (or dens because of its supposed resemblance to a tooth) projecting upwards from its body. This process is, in fact, the body of the first vertebra which has fused with the body of the axis instead of being incorporated into the atlas. The front of the dens articulates with the back of the anterior arch of the atlas; rotary (shaking) movements of the head occur at this joint. The seventh cervical vertebra has a very long spinous process which is easily palpable. The primary curvature of the vertebral column is concave forwards and this persists in the thoracic and pelvic regions. In contrast, the cervical and lumbar parts of the vertebral column are convexly curved anteriorly. These anterior curvatures are secondary curvatures which appear in late fetal life. The cervical curvature becomes accentuated in early childhood as the child begins to support its own head and the lumbar curve develops as the child begins to sit up.


2012 ◽  
Vol 32 (suppl 1) ◽  
pp. 01-03 ◽  
Author(s):  
Janaína D. Barisson ◽  
Cristiane H. Louro ◽  
Sheila J.T. Dias ◽  
Flávio S. Jojima ◽  
Murilo S. Ferreira ◽  
...  

The aim of this study was to describe the axial skeleton of a wild Brazilian carnivorous, the crab-eating fox (Cerdocyon thous). Five specimens of crab-eating fox were previously unfrozen for radiographic exams and their bones went through dissection and chemical maceration. This animal presents seven cervical vertebrae, and from the third on, they become shorter and wider than the other ones e the spinous process was makeable from the fifth cervical vertebrae on. There are thirteen thoracic vertebrae and the spinous process of the lumbar vertebrae, which are seven, decreases from the fifth on. The sacrum is formed by two vertebrae and there are twenty or twenty one caudal vertebrae. It can be concluded that the crab-eating fox axial skeleton is similar to that of the domestic dog.


2019 ◽  
Author(s):  
Julie Soulard ◽  
Jacques Vaillant ◽  
Clara-Thémis Agier ◽  
Nicolas Vuillerme

BACKGROUND Ankylosing spondylitis (AS) is a chronic rheumatic disease which affects the axial skeleton and sacro-iliac joints. By impacting spinal mobility and physical functions, AS could also potentially impair gait. However, while published data are rather sparse, it appears that discrepancies exist regarding AS consequences on gait characteristics, tasks and analysis techniques used to assess gait ability of patients with AS. OBJECTIVE The review questions are twofold: (1) What are the consequences of AS on gait? and (2) How is gait assessed in patients with AS? METHODS Databases were systematically searched to identify studies satisfying the search criteria, using the synonyms of ankylosing spondylitis and gait. Two reviewers extracted from the articles study characteristics, sample descriptions, methods and main results in relation to gait. RESULTS 168 titles were extracted from databases and 17 studies were included in the review. 13 studies (76%) used clinical gait measurements, and 4 (23%) used laboratory gait measurements. Only 6 involved a healthy control group. Gait pattern of patients with AS was more cautious, associated to a decreased pelvic tilt and lower limbs angles in the sagittal plane. Studies used diverse protocols, instructions and parameters when assessing gait in AS patients. CONCLUSIONS Only few studies have assessed gait characteristics in patients with AS. Published data evidence that no consensus exists regarding gait analysis methods for patients with AS. However, published studies are encouraging as they provide us the opportunity to propose guidelines to improve the design and methodology for future studies on gait and AS. CLINICALTRIAL PROSPERO: CRD42018102540 and JMIR Res Protoc doi:10.2196/12470


2021 ◽  
Vol 39 (2) ◽  
pp. 1-18
Author(s):  
Maripaz Chinchilla-Barboza ◽  
Siam Chiquillo-Vergara ◽  
Valeria Delgado-Álvarez ◽  
Susan Gutiérrez-Gutiérrez ◽  
Johnny Steven Mora-Aleman ◽  
...  

The Choloepus Hoffmani is a mammal belonging to the Xenarthra superorder; xenarthrans are distributed from North to South America. It is common for these animals to require medical attention at wildlife rescue centers after being attacked by domestic animals or run over by cars. A proper understanding of this species’ anatomy is vital in order to be able to offer them a proper level of clinical attention. This publication aims to describe the spine’s anatomical and radiographic characteristics of the Choloepus Hoffmani. Four individuals were used in this research; the spine bones were cleaned by boiling and maceration. In the results, it was possible to observe how the postcranial axial skeleton in the sloths is made up by five of distinctive vertebra types. In the spine were found: six cervical vertebrae, a variable number of thoracic vertebrae, xenarthrous lumbar vertebrae, and a fusion between the sacrum and coxal bone. Finally, four underdeveloped caudal vertebrae were also identified in a small stump-like tail. Radiographically, no pathologies were observed in the alignment or structure of the spine. In conclusion, the present study described both the osteology alongside the anatomical radiography of the vertebral column of the Choloepus hoffmani, highlighting the particularities that are not found in domestic mammals and other members of the Xenarthra superorder. Information of this kind is relevant for forensic wildlife analysis, alongside aiding the treatment of animals in this species who suffered lesions in their spine.


Author(s):  
Paulina Hebisz ◽  
Rafal Hebisz ◽  
Marek Zaton

AbstractBackground: The purpose of this study was to compare body balance in road and off-road cyclists, immediately before and after the racing season.Material/Methods: Twenty individuals participated in the study and they were divided into two groups: specialists in road-cycling (n = 10) and in off-road cycling (n = 10). Immediately before and after the five-month racing season stabilographic trials were carried out (at rest and after progressive exercise). In assessing body balance the distance and velocity of the centre shifts (in the anterior-posterior and left-right direction) were analysed. The tests were performed with the cyclists’ eyes open, eyes closed, and in feedback.Results: After the racing season, in the off-road cyclists’ group, distance and velocity of the centre of pressure shifts increased after a progressive exercise.Conclusions: In the off-road cyclists’ group the balance of the body in the sagittal plane deteriorated after the racing season. Moreover, after the racing season off-road cyclists were characterized by a worse balance of the body, compared to road cyclists


2019 ◽  
pp. 3-13
Author(s):  
Alexandru Cîtea ◽  
George-Sebastian Iacob

Posture is commonly perceived as the relationship between the segments of the human body upright. Certain parts of the body such as the cephalic extremity, neck, torso, upper and lower limbs are involved in the final posture of the body. Musculoskeletal instabilities and reduced postural control lead to the installation of nonstructural posture deviations in all 3 anatomical planes. When we talk about the sagittal plane, it was concluded that there are 4 main types of posture deviation: hyperlordotic posture, kyphotic posture, rectitude and "sway-back" posture.Pilates method has become in the last decade a much more popular formof exercise used in rehabilitation. The Pilates method is frequently prescribed to people with low back pain due to their orientation on the stabilizing muscles of the pelvis. Pilates exercise is thus theorized to help reactivate the muscles and, by doingso, increases lumbar support, reduces pain, and improves body alignment.


2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Anoli Shah ◽  
Justin V. C. Lemans ◽  
Joseph Zavatsky ◽  
Aakash Agarwal ◽  
Moyo C. Kruyt ◽  
...  

In the anatomy of a normal spine, due to the curvatures in various regions, the C7 plumb line (C7PL) passes through the sacrum so that the head is centered over the pelvic-ball and socket hip and ankle joints. A failure to recognize malalignment in the sagittal plane can affect the patient's activity as well as social interaction due to deficient forward gaze. The sagittal balance configuration leads to the body undertaking the least muscular activities as possible necessary to maintain spinal balance. Global sagittal imbalance is energy consuming and often results in painful compensatory mechanisms that in turn negatively influence the patient's quality of life, self-image, and social interaction due to inability to maintain a horizontal gaze. Deformity, scoliosis, kyphosis, trauma, and/or surgery are some ways that this optimal configuration can be disturbed, thus requiring higher muscular activity to maintain posture and balance. Several parameters such as the thoracic kyphosis (TK), lumbar lordosis (LL), pelvic incidence (PI), sacral slope (SS), and hip and leg positions influence the sagittal balance and thus the optimal configuration of spinal alignment. This review examines the clinical and biomechanical aspects of spinal imbalance, and the biomechanics of spinal balance as dictated by deformities—ankylosing spondylitis (AS), scoliosis and kyphosis; surgical corrections—pedicle subtraction osteotomies (PSO), long segment stabilizations, and consequent postural complications like proximal and distal junctional kyphosis. The study of the biomechanics involved in spinal imbalance is relatively new and thus the literature is rather sparse. This review suggests several potential research topics in the area of spinal biomechanics.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3849
Author(s):  
Martin Svoboda ◽  
Milan Chalupa ◽  
Karel Jelen ◽  
František Lopot ◽  
Petr Kubový ◽  
...  

The article deals with the measurement of dynamic effects that are transmitted to the driver (passenger) when driving in a car over obstacles. The measurements were performed in a real environment on a defined track at different driving speeds and different distributions of obstacles on the road. The reaction of the human organism, respectively the load of the cervical vertebrae and the heads of the driver and passenger, was measured. Experimental measurements were performed for different variants of driving conditions on a 28-year-old and healthy man. The measurement’s main objective was to determine the acceleration values of the seats in the vehicle in the vertical movement of parts of the vehicle cabin and to determine the dynamic effects that are transmitted to the driver and passenger in a car when driving over obstacles. The measurements were performed in a real environment on a defined track at various driving speeds and diverse distributions of obstacles on the road. The acceleration values on the vehicle’s axles and the structure of the driver’s and front passenger’s seats, under the buttocks, at the top of the head (Vertex Parietal Bone) and the C7 cervical vertebra (Vertebra Cervicales), were measured. The result of the experiment was to determine the maximum magnitudes of acceleration in the vertical direction on the body of the driver and the passenger of the vehicle when passing a passenger vehicle over obstacles. The analysis of the experiment’s results is the basis for determining the future direction of the research.


Author(s):  
Di Zhou ◽  
Ye Tian ◽  
Yao Lu ◽  
Xueying Yang

AbstractSitus inversus totalis (SIT) is an extremely uncommon congenital disease where the major organs of the body are transposed through the sagittal plane. Kartagener syndrome is a complication of SIT with immotility of bronchial cilia, bronchiectasis, and chronic sinusitis. There is no report describing patients with Kartagener syndrome who accept uni-portal segmentectomies for lung cancer in past studies. Here we report a 74-year-old female patient with both Kartagener syndrome and a small early-stage lung cancer lesion located in the apical segment of the left upper lobe (LS1). The pulmonary segment anatomy of the left upper lobe in this case, which had very rare variants, was presented and interpreted in detail. This patient underwent an anatomic segmentectomy to the LS1 and a partial excision to the left middle lobe with bronchiectasis through a single 3 cm length incision. We believe that the case can give surgeons some experience and inspiration.


Sign in / Sign up

Export Citation Format

Share Document