scholarly journals Bioethanol Production from Tapioca-Waste as Potential Additive Fuel for LCGC (Low-Cost Green Car)

2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Danty Oktiana Prastiwi ◽  
Novia Anggita ◽  
Yudha Putra Arishandy

The majority style of people in transportation is 24% contribute to increasing premium demand as energy. Unfortunately, fossil fuel is not renewable and limited quantity. Its means, potential biomass of tapioca waste should be an alternative energy source to solve that problem. Today, the biosystem of bioethanol production needs to be optimized to maximize filtration and minimize the production cost. First, composition and time incubation needs to be optimized. The research found that to fermented 50 g waste on 200 mL water, we need 2 g of yeast, and the time of harvesting optimum is fourth days with 17% ethanol. Without acid hydrolyze, tapioca waste in yeast fermentation serves 2600 ppm glucose on the first day and increases significantly on the second day with 2964.77 ppm glucose. This concentration found by DNS (Dinitrosalicylic acid) method. Yeast is the subject that converts glucose on medium to be ethanol. Secondly, that medium distillate gets pure ethanol. Thirdly, this ethanol mix with premium in some concentration, include 0%, 10%, 20%, 30%, 40%, 50%. This variant would do test emission to understand the advantages of tapioca bioethanol compare to fossil fuel. The result of this research should be support government to enhance LCGC (Low-cost green car) program to achieve lower air pollutants, green energy resolution, and cleaner production in tapioca industry.   Key Word: bioethanol, emission, formulation, LCGC, tapioca,

2019 ◽  
Vol 6 (1) ◽  
pp. 28-34
Author(s):  
Danty Oktiana Prastiwi ◽  
Novia Anggita ◽  
Yudha Putra Arishandy

The majority style of people in transportation is 24% contribute to increasing premium demand as energy. Unfortunately, fossil fuel is not renewable and limited quantity. Its means, potential biomass of tapioca waste should be an alternative energy source to solve that problem. Today, the biosystem of bioethanol production needs to be optimized to maximize filtration and minimize the production cost. First, composition and time incubation needs to be optimized. The research found that to fermented 50 g waste on 200 mL water, we need 2 g of yeast, and the time of harvesting optimum is fourth days with 17% ethanol. Without acid hydrolyze, tapioca waste in yeast fermentation serves 2600 ppm glucose on the first day and increases significantly on the second day with 2964.77 ppm glucose. This concentration found by DNS (Dinitrosalicylic acid) method. Yeast is the subject that converts glucose on medium to be ethanol. Secondly, that medium distillate gets pure ethanol. Thirdly, this ethanol mix with premium in some concentration, include 0%, 10%, 20%, 30%, 40%, 50%. This variant would do test emission to understand the advantages of tapioca bioethanol compare to fossil fuel. The result of this research should be support government to enhance LCGC (Low-cost green car) program to achieve lower air pollutants, green energy resolution, and cleaner production in tapioca industry.   Key Word: bioethanol, emission, formulation, LCGC, tapioca,


2020 ◽  
Vol 3 (1) ◽  
pp. 27-30
Author(s):  
Adeoye A.O ◽  
Quadri R.O. ◽  
Lawal O. S.

Environmental problems associated with fossil fuel were highlighted to see the need for alternative energy in Nigeria. This review identified the various types of pyrolysis and their major products that make them fit as a suitable alternative energy source. It described pyrolysis as a means of converting waste to wealth and as a good source of energy generation thereby reducing reliance on fossil fuel. It proffers low-cost solutions for energy generation. The study as a whole contributed to the sustainability of the environment and removal of agricultural waste that constitute nuisance to Nigeria physical environment.


2014 ◽  
Vol 10 (1) ◽  
pp. 35-51
Author(s):  
I. Czupy

Concerns about climate change and fossil fuel shortages are encouraging interest in stumps, as alternative energy sources. Stumps are an almost unused resource in the context of bio fuels. Stump harvesting signifies an intensification of forest management compared with conventional stem-only or above-ground biomass-only harvesting. There are many benefits of stump harvesting. These include: the production of wood fuel, fossil fuel substitution, and improved soil preparation.Removing tree trunks in Hungary has been going on according to the principle of stump extraction, which means stumps are removed by grabbing technology. Experiments have been carried out to reduce the extraction force. In the Great Hungarian Lowland, where large areas require the operation implementation, stump extraction is done by special, hydraulic driven baggers equipped with a special bucket. During operation of the equipment, we carried out measurements of the extraction force and the time requirement. The experiments are designed to carry out the measurements with different soils and different tree species. According to our proposal the suitable force and torque required to remove stumps can be significantly reduced if before the lifting the soil — root connection is loosened. One of the possible ways to implement this task is the use of vibration. Since relatively great vibration power and wide domain of frequency are necessary, therefore we prepared the loosening machinery elements of alternating-current hydraulics system. Based on constructions variants we created a tractor-mounted experimental alternating-current hydraulic stump-loosening machine. It was designed with the ability to produce horizontal vibration in order to loosen stumps.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 245
Author(s):  
Hyung-Eun An ◽  
Kang Hyun Lee ◽  
Ye Won Jang ◽  
Chang-Bae Kim ◽  
Hah Young Yoo

As greenhouse gases and environmental pollution become serious, the demand for alternative energy such as bioethanol has rapidly increased, and a large supply of biomass is required for bioenergy production. Lignocellulosic biomass is the most abundant on the planet and a large part of it, the second-generation biomass, has the advantage of not being a food resource. In this study, Sicyos angulatus, known as an invasive plant (harmful) species, was used as a raw material for bioethanol production. In order to improve enzymatic hydrolysis, S. angulatus was pretreated with different NaOH concentration at 121 °C for 10 min. The optimal NaOH concentration for the pretreatment was determined to be 2% (w/w), and the glucan content (GC) and enzymatic digestibility (ED) were 46.7% and 55.3%, respectively. Through NaOH pretreatment, the GC and ED of S. angulatus were improved by 2.4-fold and 2.5-fold, respectively, compared to the control (untreated S. angulatus). The hydrolysates from S. angulatus were applied to a medium for bioethanol fermentation of Saccharomyces cerevisiae K35. Finally, the maximum ethanol production was found to be 41.3 g based on 1000 g S. angulatus, which was 2.4-fold improved than the control group.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Marcos L. Corazza ◽  
Julia Trancoso

Abstract The search for sustainable ideas has gained prominence in recent decades at all levels of society since it has become imperative an economic, social, and environmental development in an integrated manner. In this context, biorefineries are currently present as the technology that best covers all these parameters, as they add the benefits of waste reuse, energy cogeneration, and fossil fuel substitution. Thus, the study of the various applicable biological matrices and exploring the technical capabilities of these processes become highly attractive. Thermodynamic modeling acts in this scenario as a fundamental tool for phase behavior predictions in process modeling, design, and optimization. Thus, this work aimed to systematize, using the PRISMA statement for systematic reviews, the information published between 2010 and 2020 on phase equilibria modeling in systems related to biorefineries to organize what is already known about the subject. As a result, 236 papers were categorized in terms of the year, country, type of phase equilibria, and thermodynamic model used. Also, the phase behavior predictions of different thermodynamic models under the same process conditions were qualitatively compared, establishing PC-SAFT as the model that best represents the great diversity of interest systems for biorefineries in a wide range of conditions.


Author(s):  
Yu. Selikhov ◽  
K. Gorbunov ◽  
V. Stasov

Solar energy is widely used in solar systems, where economy and ecology are combined. Namely, this represents an important moment in the era of depletion of energy resources. The use of solar energy is a promising economical item for all countries of the world, meeting their interests also in terms of energy independence, thanks to which it is confidently gaining a stable position in the global energy sector. The cost of heat obtained through the use of solar installations largely depends on the radiation and climatic conditions of the area where the solar installation is used. The climatic conditions of our country, especially the south, make it possible to use the energy of the Sun to cover a significant part of the need for heat. A decrease in the reserves of fossil fuel and its rise in price have led to the development of optimal technical solutions, efficiency and economic feasibility of using solar installations. And today this is no longer an idle curiosity, but a conscious desire of homeowners to save not only their financial budget, but also health, which is possible only with the use of alternative energy sources, such as: double-circuit solar installations, geothermal heat pumps (HP), wind power generators. The problem is especially acute in the heat supply of housing and communal services (HCS), where the cost of fuel for heat production is several times higher than the cost of electricity. The main disadvantages of centralized heat supply sources are low energy, economic and environmental efficiency. And high transport tariffs for the delivery of energy carriers and frequent accidents on heating mains exacerbate the negative factors inherent in traditional district heating. One of the most effective energy-saving methods that make it possible to save fossil fuel, reduce environmental pollution, and meet the needs of consumers in process heat is the use of heat pump technologies for heat production.


2021 ◽  
Author(s):  
Hamid Omidvarborna ◽  
Prashant Kumar

<p>The majority of people spend most of their time indoors, where they are exposed to indoor air pollutants. Indoor air pollution is ranked among the top ten largest global burden of a disease risk factor as well as the top five environmental public health risks, which could result in mortality and morbidity worldwide. The spent time in indoor environments has been recently elevated due to coronavirus disease 2019 (COVID-19) outbreak when the public are advised to stay in their place for longer hours per day to protect lives. This opens an opportunity to low-cost air pollution sensors in the real-time Spatio-temporal mapping of IAQ and monitors their concentration/exposure levels indoors. However, the optimum selection of low-cost sensors (LCSs) for certain indoor application is challenging due to diversity in the air pollution sensing device technologies. Making affordable sensing units composed of individual sensors capable of measuring indoor environmental parameters and pollutant concentration for indoor applications requires a diverse scientific and engineering knowledge, which is not yet established. The study aims to gather all these methodologies and technologies in one place, where it allows transforming typical homes into smart homes by specifically focusing on IAQ. This approach addresses the following questions: 1) which and what sensors are suitable for indoor networked application by considering their specifications and limitation, 2) where to deploy sensors to better capture Spatio-temporal mapping of indoor air pollutants, while the operation is optimum, 3) how to treat the collected data from the sensor network and make them ready for the subsequent analysis and 4) how to feed data to prediction models, and which models are best suited for indoors.</p>


2014 ◽  
Vol 20 (2) ◽  
pp. 261-271 ◽  
Author(s):  
Maryam Nikzad ◽  
Kamyar Movagharnejad ◽  
Farid Talebnia ◽  
Ghasem Najafpour ◽  
Farahi Hosein

Bioethanol production from lignocellulosic biomass provides an alternative energy-production system. Sorghum bicolor stem is a cheap agro-waste for bioethanol production. In this study, response surface methodology (RSM) was used to optimize alkali pretreatment conditions for sorghum bicolor stem with respect to substrate concentration, NaOH concentration and pretreatment time based on a central composite rotary design. The main goal was to achieve the highest glucose and xylose yields after enzymatic hydrolysis. Under optimum conditions of pretreatment i.e. time 60.4 min, solid loading 4.2%, and NaOH concentration 1.7%, yields of 98.94% g glucose/g cellulose and 65.14% g xylose/g hemicelluloses were obtained. The results of a confirmation experiment under the optimal conditions agreed well with model predictions. Pretreatment of sorghum bicolor stem at the optimum condition increased the glucose and xylose yields by 7.14 and 3.02 fold, respectively. Alkali pretreatment showed to be a great choice for the pretreatment of sorghum bicolor stem.


2012 ◽  
Vol 59 (1) ◽  
Author(s):  
Ahmad Idi ◽  
Madihah Md. Salleh ◽  
Zaharah Ibrahim ◽  
Shaza Eva Mohamad

One of the major advantages of biofuel over fossil fuel is that it is environmentally friendly but unfortunately most of the chemicals used in the pretreatment of lignocelluloses biomass to produce biofuel can cause adverse effects to the environment. In this study, ionic liquid was used for the pretreatment of cocoa waste. Its effectiveness in the treatment process was compared to the alkalis and acids used in the conventional pretreatment media. The effectiveness of pretreatment using ionic liquid, H2SO4 and NaOH was based on the reduction of biomass, production of reducing sugar and also bioethanol. Ionic liquid pretreatment was found to show minimal biomass loss of only 31% after pretreatment compared to H2SO4 and NaOH which showed loss of 61% and 79% respectively. The untreated biomass has 10% amount of cellulose but upon pretreatment with ionic liquid, H2SO4 and NaOH, significant amount of cellulose was detected compared to NaOH which produced only 7% of cellulose. Two types of yeasts were also isolated from Malaysian local fermented food, the tapai ubi which were tested for the abilities to ferment the reducing sugar produced. Using the DNS method for determining reducing sugar, ionic liquid pretreatment was shown to produce 6.3×10–2g/L of reducing sugar while the untreated, H2SO4 and NaOH pretreatment produced 2.87×10–2g/L, 7.4×10–2g/L and 3.37×10–2g/L respectively at the end of 24 hours of incubation. Bioethanol produced during the fermentation was analysed using gas chromatography. Ionic liquid produced a total of 7.885g/L, H2SO4 produced 7.911g/L NaOH produced 6.824g/L and untreated cocoa waste produced 5.116g/L of ethanol at the end of 24 hours incubation.


2018 ◽  
Vol 67 ◽  
pp. 04011
Author(s):  
Sunaryo Sunaryo ◽  
Adri Wirawan Ramadhani

Indonesia has more than 17,000 islands and has plenty of beautiful beaches and underwater spots which have great potential for maritime tourism. Tourism was ranked 3rd on Indonesia's foreign income and plays an important role for the country’s ecomony. Despite having potential advantages, the government has not yet maximized its efforts to develop the attractiveness of its maritime tourism. Beside the beautiful spots Indonesia is also blessed with all year long sun shine, which could be tapped as renewable and green energy as substitution to fossil fuel. Refer to these great advantages of natural resources the research was aimed to support the government’s program in developing its maritime tourism and to promote the use of green and renewable energy by designing a solar-powered tourism recreational boat which has 12 meters of length. The paper is focused on the design of solar energy and its electrical system, which includes conversion of solar energy to electrical energy and store it in the battery, the required electrical power is also predicted based on the appliances and equipment installed in the boat, the optimum attachment of solar panels on the boat structure is also calculated. All the methods and information we use are obtained from literature study, discussion with experts, and surveys to Jagur as solar-powered electric boat from Universitas Indonesia.


Sign in / Sign up

Export Citation Format

Share Document