scholarly journals Optimasi Pembuatan Mikrokapsul Kalsium-Alginat-EDTA Sebagai Adsorben Untuk Logam Kadmium

2020 ◽  
Vol 15 (4) ◽  
pp. 384
Author(s):  
Sani Widyastuti Pratiwi ◽  
Ayu Triastuti ◽  
Ratna Nurmalasari ◽  
Inggis Pinarti

Cadmium was one of the metals classified in the type of nonessential heavy metal that classified as carcinogenic and is one of the pollutants in the environment, especially water. The content of cadmium in water tends to have very low levels, so certain techniques are needed to determine the level of pre concentration. In the pre concentration technique adsorbents were needed which could absorb cadmium, one of which is calcium-alginate microcapsule modified with EDTA. Calcium-alginate was  modified with EDTA to increase the ability of the microcapsule to absorb cadmium metal. The purpose of this study was to determine the optimum conditions for making Calcium-alginate-EDTA microcapsule in adsorbing cadmium. The stages of this research were optimization of Calcium-alginate-EDTA resin with variable in the form of Calcium chloride concentration (0.05 M; 0.1 M; 0.5 M; 1 M; and 2 M), EDTA mass (0.50 g ; 0.75 g; 1 g; 2 g and 2.5 g) and the concentration of sodium-alginate (0.5%; 1%, 1.5%; 2%, and 3%); Characterization of microcapsule functional groups by infrared spectrophotometry and determination of the retention capacity of Calcium-Alginate-EDTA microcapsule for cadmium absorption by atomic absorption spectrophotometry. The results of infrared characterization showed a change in transmittance in the functional groups C-O dan C-N that occurred in the microcapsule after binding to cadmium metal at wave number 1436.97 cm-1. The optimum conditions for making Calcium-alginate-EDTA resins were in conditions of 0.1 M Calcium chloride concentration, 1% sodium-alginate concentration and EDTA mass 0.75 g EDTA with retention capacity of  Cd was 0.0301 mg/g.

2014 ◽  
Vol 50 (4) ◽  
pp. 741-748 ◽  
Author(s):  
Wissam Zam ◽  
Ghada Bashour ◽  
Wassim Abdelwahed ◽  
Warid Khayata

Calcium alginate beads containing pomegranate peels' polyphenol extract were encapsulated by ionic gelation method. The effects of various formulation factors (sodium alginate concentration, calcium chloride concentration, calcium chloride exposure time, gelling bath time maintaining, and extract concentration) on the efficiency of extract loading were investigated. The formulation containing an extract of 1 g pomegranate peels in 100 mL distilled water encapsulated with 3 % of sodium alginate cured in 0.05 M calcium chloride for 20 minutes and kept in a gelling bath for 15 minutes was chosen as the best formula regarding the loading efficiency. These optimized conditions allowed the encapsulation of 43.90% of total extracted polyphenols and 46.34 % of total extracted proanthocyanidins. Microencapsulation of pomegranate peels' extract in calcium alginate beads is a promising technique for pharmaceutical and food supplementation with natural antioxidants.


2014 ◽  
Vol 925 ◽  
pp. 8-12 ◽  
Author(s):  
Gim Pao Lim ◽  
Hui Yen Ong ◽  
Boon Beng Lee ◽  
Muhammad Syarhabil Ahmad ◽  
Harbant Singh ◽  
...  

The objective of this study was to investigate the effects of process variables on size of chitosan-alginate capsules produced through extrusion-dripping method. Chitosan-calcium chloride solution was extruded into sodium alginate to form chitosan-alginate capsules which have a defined inner core and membrane. The results showed that sodium alginate concentration, chitosan concentration, chitosan to calcium chloride concentration ratio, needle diameter, gelation time have significant effect on the diameter and membrane thickness of chitosan-alginate capsules. Under the tested condition, chitosan-alginate capsules with diameter in a range of 3.4 mm to 4.5 mm were produced. The membrane thickness of the capsules increased when the curing time increased from 5 min to 60 min. As the concentration of sodium alginate (0.3-0.9 %w/v) and chitosan (0.4-1.0 %w/v) increased, the diameter of the chitosan-alginate capsules increased. The diameter of chitosan-alginate capsules increased with decreasing the chitosan to calcium chloride concentration ratio (1:0.5-1:1.5).


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10165
Author(s):  
Nucharee Juntarachot ◽  
Sasithorn Sirilun ◽  
Duangporn Kantachote ◽  
Phakkharawat Sittiprapaporn ◽  
Piyachat Tongpong ◽  
...  

Background The accumulation of plaque causes oral diseases. Dental plaque is formed on teeth surfaces by oral bacterial pathogens, particularly Streptococcus mutans, in the oral cavity. Dextranase is one of the enzymes involved in antiplaque accumulation as it can prevent dental caries by the degradation of dextran, which is a component of plaque biofilm. This led to the idea of creating toothpaste containing dextranase for preventing oral diseases. However, the dextranase enzyme must be stable in the product; therefore, encapsulation is an attractive way to increase the stability of this enzyme. Methods The activity of food-grade fungal dextranase was measured on the basis of increasing ratio of reducing sugar concentration, determined by the reaction with 3, 5-dinitrosalicylic acid reagent. The efficiency of the dextranase enzyme was investigated based on its minimal inhibitory concentration (MIC) against biofilm formation by S. mutans ATCC 25175. Box-Behnken design (BBD) was used to study the three factors affecting encapsulation: pH, calcium chloride concentration, and sodium alginate concentration. Encapsulation efficiency (% EE) and the activity of dextranase enzyme trapped in alginate beads were determined. Then, the encapsulated dextranase in alginate beads was added to toothpaste base, and the stability of the enzyme was examined. Finally, sensory test and safety evaluation of toothpaste containing encapsulated dextranase were done. Results The highest activity of the dextranase enzyme was 4401.71 unit/g at a pH of 6 and 37 °C. The dextranase at its MIC (4.5 unit/g) showed strong inhibition against the growth of S. mutans. This enzyme at 1/2 MIC also showed a remarkable decrease in biofilm formation by S. mutans. The most effective condition of dextranase encapsulation was at a pH of 7, 20% w/v calcium chloride and 0.85% w/v sodium alginate. Toothpaste containing encapsulated dextranase alginate beads produced under suitable condition was stable after 3 months of storage, while the sensory test of the product was accepted at level 3 (like slightly), and it was safe. Conclusion This research achieved an alternative health product for oral care by formulating toothpaste with dextranase encapsulated in effective alginate beads to act against cariogenic bacteria, like S. mutants, by preventing dental plaque.


2015 ◽  
Vol 15 (2) ◽  
pp. 123-126
Author(s):  
Magdalena Brzezińska ◽  
Grzegorz Szparaga

Abstract The aim of the study was to determine the rheological properties of solutions of two types of sodium alginate in water. Rheological studies were carried out to determine the rheological properties of the spinning solutions. Polymer solutions of different concentrations were obtained. Based on the preliminary research of the concentrations of solutions, the proper n and k parameters were selected in order to obtain fibre by wet spinning from solution method. For selected concentrations of polymer solutions, the calcium alginate fibres were obtained.


2020 ◽  
pp. 41-61
Author(s):  
Liliana Mariel Cáceres ◽  
Gustavo Adolfo Velasco ◽  
Eliana Paola Dagnino ◽  
Ester R Chamorro

Essential grapefruit oil with high concentrations of limonene is used in food, cosmetic and pharmaceutical industries due to its antimicrobial properties, fragrance, and flavor. To facilitate its manipulation and protect it from adverse environmental factors, the microencapsulation is used. The objective of this work was to optimize the microencapsulation process of grapefruit oil using external ionic gelation coupled to extrusion with sodium alginate and calcium chloride. We achieved the best encapsulation conditions with calcium chloride concentration at 7.4% w/v and a crosslinking time of 58 minutes, obtaining a yield of 62% and an efficiency of 100% with an oil loading capacity of 10% w/w. The chemical adsorption of calcium as well during the crosslinking process was studied, observing a significant fit with the Elovich equation. And an adjustment of the controlled release of the oil was obtained to the empirical kinetic model of Korsmeyer and Peppas.


Author(s):  
Kasipathy Kailasapathy ◽  
Chaminda Perera ◽  
Michael Phillips

Flavourzyme® (a protease-peptidase complex) was microencapsulated with sodium alginate and Hi-MaizeTM starch in varying concentrations and proportions for maximising encapsulation efficiency (EE). Seventy two percent EE was achieved for immobilising Flavourzyme® using 1.8% (w/v) sodium alginate and 1% Hi-Maize[TM] starch with 30 min hardening of capsules in 0.1M calcium chloride solution. Hi-MaizeTM starch as a filler material improved EE and reduced the enzyme release during capsular hardening in calcium chloride solution. Increasing the concentration of sodium alginate solution (1.2 to 1.8 %, w/v) and calcium chloride concentration (0.05M to 1.0M) increased the EE. The optimum hardening time for the microcapsules in calcium chloride solution was 30 min. Shrinkage of microcapsules during hardening in calcium chloride was less with higher concentration of alginate. More spherical capsules were produced with up to 1.8% (w/v) sodium alginate and 1% Hi-MaizeTM starch solutions.


2021 ◽  
Vol 18 (1) ◽  
pp. 179
Author(s):  
Normah Ismail ◽  
Siti Noorsyarafana Sahimi

The term of immobilized enzymes refers to enzymes that physically entrapped within pores of synthetic or natural polymeric network with no alteration in the enzyme catalytic activities. In this study, protease from silver catfish viscera have been extracted, partially purified by acetone precipitation method and immobilised in the calcium alginate beads. Various range of sodium alginate (1–5% w/v) and calcium chloride (0.1–0.5 M) concentrations were used for the optimization purpose. Proteolytic activity of the protease in the alginate beads was measured as a response to the independent variables by using casein as a substrate. The highest actual and predicted proteolytic activities were at run 12 with 674.77 CDU/mg and 639.26 CDU/mg, respectively, under predetermined factors, in which the sodium alginate and calcium chloride solution concentrations were at 3.00% (w/v) and 0.30 M, respectively. The lowest actual and predicted proteolytic activities were at run 2 with the values of 77.35 CDU/mg and 71.53 CDU/mg, respectively, whereby factors include were a sodium alginate of 4.00% (w/v) and 0.20 M of calcium chloride solution. For the experimental feasibilities, the optimum conditions that was feasible to be carried out was with a sodium alginate of 2.99% (w/v) and 0.30 M calcium chloride solution. Verification for the optimum condition was performed and there was no significant difference (p > 0.05) between the predicted (638.19 CDU/mg) and verified (699.82 CDU/mg) values. Thus, indicating that the model was significant and can be used to produce the immobilize protease under the optimum condition.


2021 ◽  
Vol 26 (4) ◽  
pp. 2825-2833
Author(s):  
UCHENNA OYEAGU ◽  
CHARLES NWUCHE ◽  
CHRISTIAN OGBONNA ◽  
JAMES OGBONNA

Microporous calcium alginate gel beads were investigated as potential solutions to mass transfer limitations in immobilized cultures. The beads were prepared by gelling mixtures of sodium alginate and fillers (starch or granulated sugars) in calcium chloride solution. The resulting beads were cured in the same solution, during which the fillers leached out of the beads thereby creating micro-pores in the beads (microporous beads). The effectiveness of the microporous beads in improving amylase production by Aspergillus niger LC 269109 was investigated. Spores of A. niger were immobilized in the microporous beads and used for batch alpha amylase and gluco amylase production. Amylase production by the A. niger immobilized in the microporous beads were significantly higher (p<0.01) than the values obtained with the conventional calcium alginate gel beads. Under all the conditions investigated, gluco-amylase activities were significantly (p<0.01) higher than the alpha-amylase activities. Under the optimum conditions of inoculum concentration (1.0 × 105 spores/ml), pH (6), temperature (35°C), bead diameter (3 mm) and calcium chloride concentration (1.5%), the gluco-amylase and alpha amylase activities were 11.98 U/ml and 6.7 U/ml respectively, which were significantly higher (p<0.05) than the 7.8 U/ml and 3.2 U/ml obtained with the conventional gel beads.


Sign in / Sign up

Export Citation Format

Share Document