scholarly journals Study of CH/π Interactions in the Molecular Recognition between Acetyl Galactopyranoside and 6-substituted 2-Methoxypyridines and 2(1H)-Pyridones

2017 ◽  
Vol 61 (3) ◽  
Author(s):  
Fabian Cuetara-Guadarrama ◽  
Karla Ramírez-Gualito ◽  
Gabriel Cuevas

A series of 6-substituted 2-methoxypyridine and 2(1<em>H</em>)-pyridones was designed and synthesized for its evaluation in the molecular recognition of acetyl 2,3,4,6-tetra-<em>O</em>-methyl-b-D-galactopyranoside substrate. <sup>1</sup>H-NMR titration (affinity constant <em>K</em><sub>a</sub> determination) and chemical shift perturbation experiments were performed to evaluate the capacity of these receptors to form CH/π interactions with the substrate. The addition of 2-methoxypyridines to the substrate effected up-field shift for the H<sup>3</sup>, H<sup>4</sup> and H<sup>5</sup> proton signals and down-field shift for the H<sup>2</sup> proton signal of galactopyranoside substrate. The determined affinity constant <em>K</em><sub>a</sub> values for the association between 2(1<em>H</em>)-pyridones and galactopyranoside showed that molecular recognition was weak. These results have demonstrated the existence of weak CH/π interactions and have reflected their weak intermolecular nature. Finally DFT calculations were performed to illustrate the geometry of the molecular recognition between 2(1<em>H</em>)-pyridones and galactopyranoside.

2017 ◽  
Vol 8 ◽  
pp. 348-357 ◽  
Author(s):  
Ana I Ramos ◽  
Pedro D Vaz ◽  
Susana S Braga ◽  
Artur M S Silva

Background: Aescin, a natural mixture of saponins occurring in Aesculus hippocastanum, exhibits important flebotonic properties, being used in the treatment of chronic venous insufficiency in legs. The inclusion of aescin into cyclodextrins (CDs) is a technical solution for its incorporation into the textile of stockings, but details of the physicochemistry of these host–guest systems are lacking. This work investigates the inclusion of aescin into the cavities of two native cyclodextrins, β-CD and γ-CD. Results: The continuous variation method applied to aqueous-phase 1H nuclear magnetic resonance (1H NMR) has demonstrated that the preferred CD/aescin inclusion stoichiometries are 2:1 with β-CD and 1:1 with γ-CD. The affinity constant calculated for γ-CD·aescin was 894 M−1, while for 2β-CD·aescin it was estimated to be 715 M−1. Density functional theory (DFT) calculations on the interaction of aescin Ib with CDs show that an inclusion can indeed occur and it is further demonstrated that the wider cavity of γ-CD is more adequate to accommodate this large guest. ROESY spectroscopy is consistent with the formation of a complex in which the triterpenic moiety of aescin is included into the cavity of γ-CD. The higher stability of this geometry was confirmed by DFT. Furthermore, DFT calculations were applied to determine the chemical shifts of the protons H3 and H5 of the CDs in the optimised structures of the inclusion complexes. The calculated values are very similar to the experimental data, validating the approach made in this study by NMR. Conclusion: The combination of experimental data from aqueous-state NMR measurements and theoretical calculations has demonstrated that γ-CD is the most suitable host for aescin, although the inclusion also occurs with β-CD. The geometry of the γ-CD·aescin complex is characterised by the inclusion of the triterpene segment of aescin into the host cavity.


1997 ◽  
Vol 62 (8) ◽  
pp. 1169-1176 ◽  
Author(s):  
Antonín Lyčka ◽  
Jaroslav Holeček ◽  
David Micák

The 119Sn, 13C and 1H NMR spectra of tris(1-butyl)stannyl D-glucuronate have been measured in hexadeuteriodimethyl sulfoxide, tetradeuteriomethanol and deuteriochloroform. The chemical shift values have been assigned unambiguously with the help of H,H-COSY, TOCSY, H,C-COSY and 1H-13C HMQC-RELAY. From the analysis of parameters of 119Sn, 13C and 1H NMR spectra of the title compound and their comparison with the corresponding spectra of tris(1-butyl)stannyl acetate and other carboxylates it follows that in solutions of non-coordinating solvents (deuteriochloroform) the title compound is present in the form of more or less isolated individual molecules with pseudotetrahedral environment around the central tin atom and with monodentately bound carboxylic group. The interaction of tin atom with oxygen atoms of carbonyl group and hydroxyl groups of the saccharide residue - if they are present at all - are very weak. In solutions in coordinating solvents (hexadeuteriodimethyl sulfoxide or tetradeuteriomethanol), the title compound forms complexes with one molecule of the solvent. Particles of these complexes have a shape of trigonal bipyramid with the 1-butyl substituents in equatorial plane and the oxygen atoms of monodentate carboxylic group and coordinating solvent in axial positions.


2021 ◽  
Author(s):  
Manel Vega ◽  
Salvador Blasco ◽  
Enrique García-España ◽  
Bartolome Soberats ◽  
Antonio Frontera ◽  
...  

In the presence of Ag(I), the monoanion of a cyano-N-squaraine (I) generates an intense fluorescent turn-on response. Experimental evidence and DFT calculations reveal a sequence of deprotonation-coordination events in which...


2021 ◽  
Author(s):  
Mini Loya ◽  
Bholanath Dolai ◽  
Ananta Kumar Atta

Abstract The sensing properties of naphthaldimine-glucofuranose conjugates 1 and 2 towards metal ions were investigated by 1H NMR titration, FTIR, absorbance, and fluorescence spectroscopic methods. The absorbance and fluorescence studies indicated that compound 1 formed coordination with Fe2+ and Cu2+ ions in DMSO through color changes yellow to brown and colorless, respectively. The Job's plots using absorbance data showed metal-ligand binding ratio is 1:1 for both cases. The formation of 1-Fe2+ and 1-Cu2+ complexes have been analyzed by absorption and emission spectroscopy, high-resolution mass spectrometry (HRMS) data, FTIR, 1H NMR titration experiment, and DFT calculations. The detection limits of naphthaldimine sugar conjugate 1 towards Fe2+/Cu2+ were calculated from UV-vis and fluorescence data according to the standard method. The sugar-naphthaldimine conjugate 2 has been used to establish the binding mode of 1 with Fe2+ or Cu2+ ions in DMSO.


2016 ◽  
Vol 12 ◽  
pp. 89-96 ◽  
Author(s):  
Hao Huang ◽  
Christoffer Karlsson ◽  
Maria Strømme ◽  
Martin Sjödin ◽  
Adolf Gogoll

A series of pyrroles functionalized in the 3-position with p-dimethoxybenzene via various linkers (CH2, CH2CH2, CH=CH, C≡C) has been synthesized. Their electronic properties have been deduced from 1H NMR, 13C NMR, and UV–vis spectra to detect possible interactions between the two aromatic subunits. The extent of conjugation between the subunits is largely controlled by the nature of the linker, with the largest conjugation found with the trans-ethene linker and the weakest with the aliphatic linkers. DFT calculations revealed substantial changes in the HOMO–LUMO gap that correlated with the extent of conjugation found experimentally. The results of this work are expected to open up for use of the investigated compounds as components of redox-active materials in sustainable, organic electrical energy storage devices.


Channels ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 219-227 ◽  
Author(s):  
Liberty François-Moutal ◽  
David Donald Scott ◽  
Samantha Perez-Miller ◽  
Vijay Gokhale ◽  
May Khanna ◽  
...  

2020 ◽  
Author(s):  
Riley Olsen

Inflammation is one of the body's most important natural defense mechanisms involved in wound healing. It is usually triggered by a harmful event, such as physical trauma or exposure to external stimuli including bacteria, fungi, viruses, harmful chemicals, or environmental particulates. The inflammatory process brings blood containing inflammatory mediators consisting of leukocytes, hormones, and cytokines to the site of trauma to begin healing. However, the lack of a proper inflammatory response or an overactive response can lead to further progressive tissue damage resulting in chronic inflammatory conditions or death. The cytokine oncostatin M (OSM) is of particular interest due to the pivotal role it plays in chronic inflammatory diseases like rheumatoid arthritis, inflammatory bowel disease, and various forms of cancer. These diseases have a detrimental impact on a person’s quality of life and life expectancy, as well as the economy and health care system. There is currently no clinically approved treatment targeting OSM. Thus, we propose the development of a small molecule inhibitor (SMI) targeting OSM. Using the known crystal structure of OSM combined with computational methods, a sample of 10,000 randomly selected molecules from online databases were docked in the OSM binding site 3, the site presumably responsible for binding to its receptor. The most energetically favorable binding poses were used to create a weighted density map (WDM) that shows the probability of aromatic carbons, hydrogen bond acceptors, and hydrogen bond donors to bind to OSM at particular locations in site 3. A 2,4-disubstituted quinazoline SMI was rationally designed that constructively overlaid with the WDM and was predicted to bind with high affinity based on computational docking studies. The SMI and analogs thereof, termed the SMI-27 series, were synthesized using a 4-step reaction sequence to create a small library to be tested against OSM. In order to evaluate the ability of the SMIs to inhibit OSM activity and to determine cytokine binding specificity, enzyme-linked immunosorbent assays (ELISAs) and western blot assays were performed. Fluorescence quenching experiments were used to determine the binding affinity of SMI analogs toward OSM. Finally, chemical shift perturbation NMR experiments were used to identify the important amino acids required for binding of the SMI to OSM. All of the SMI-27 analogs tested by ELISA inhibited OSM induced pSTAT3 expression below the level of the control. Additionally, SMIs 27B3 and 27B5 showed specific binding to OSM, and not to leukemia inhibitory factor (LIF) or interleukin-6 (IL-6), structurally related cytokines. The fluorescence quenching assays indicate that all SMIs exhibited direct binding to OSM, with 27B12 having a Kd of 5.1 ± 2.7 uM. Finally, the chemical shift perturbation assay identified several amino acids that appear to be involved in SMI binding. Importantly, three of these, tentatively assigned as Arg91, Leu92, and Gly166, are all located in OSM site 3. These experiments support our hypothesis that an SMI can be used to inhibit OSM activity and lay a solid foundation for the development of an SMI drug candidate that would provide a significant advancement in clinical treatments of OSM-related diseases.


2019 ◽  
Vol 75 (6) ◽  
pp. 806-811
Author(s):  
Jia Wang ◽  
Tianchao You ◽  
Teng Wang ◽  
Qikui Liu ◽  
Jianping Ma ◽  
...  

The adsorption behaviour of the CdII–MOF {[Cd(L)2(ClO4)2]·H2O (1), where L is 4-amino-3,5-bis[3-(pyridin-4-yl)phenyl]-1,2,4-triazole, for butan-2-one was investigated in a single-crystal-to-single-crystal (SCSC) fashion. A new host–guest system that encapsulated butan-2-one molecules, namely poly[[bis{μ3-4-amino-3,5-bis[3-(pyridin-4-yl)phenyl]-1,2,4-triazole}cadmium(II)] bis(perchlorate) butanone sesquisolvate], {[Cd(C24H18N6)2](ClO4)2·1.5C4H8O} n , denoted C4H8O@Cd-MOF (2), was obtained via an SCSC transformation. MOF 2 crystallizes in the tetragonal space group P43212. The specific binding sites for butan-2-one in the host were determined by single-crystal X-ray diffraction studies. N—H...O and C—H...O hydrogen-bonding interactions and C—H...π interactions between the framework, ClO4 − anions and guest molecules co-operatively bind 1.5 butan-2-one molecules within the channels. The adsorption behaviour was further evidenced by 1H NMR, IR, TGA and powder X-ray diffraction experiments, which are consistent with the single-crystal X-ray analysis. A 1H NMR experiment demonstrates that the supramolecular interactions between the framework, ClO4 − anions and guest molecules in MOF 2 lead to a high butan-2-one uptake in the channel.


2018 ◽  
Vol 42 (10) ◽  
pp. 531-534 ◽  
Author(s):  
Yangyang Wang ◽  
Mengna Li ◽  
Yufei Song ◽  
Ming Qin ◽  
Xuehui Li ◽  
...  

Two novel donor–π–acceptor-type dithienylethene derivatives, in which the triphenylamine group acts as electron donor and the formyl group functions as electron acceptor, have been developed. Their structures were confirmed by 1H NMR, 13C NMR and HRMS (ESI). Investigation of their photochromic properties indicated that they had good photochromic behaviour and excellent fatigue resistance on irradiation with UV or visible light. DFT calculations further validated these experimental results for photochromic behaviour. Moreover, these compounds can be utilised as versatile building blocks to construct novel near-infrared photochromic materials.


Sign in / Sign up

Export Citation Format

Share Document