scholarly journals A Contribution of Leg Muscle Explosion Power and Flexibility to Football Shooting Accuracy

Author(s):  
S Afrizal ◽  
Vega Soniawan
Keyword(s):  
1997 ◽  
Vol 36 (04/05) ◽  
pp. 372-375 ◽  
Author(s):  
J. R. Sutton ◽  
A. J. Thomas ◽  
G. M. Davis

Abstract:Electrical stimulation-induced leg muscle contractions provide a useful model for examining the role of leg muscle neural afferents during low-intensity exercise in persons with spinal cord-injury and their able-bodied cohorts. Eight persons with paraplegia (SCI) and 8 non-disabled subjects (CONTROL) performed passive knee flexion/extension (PAS), electrical stimulation-induced knee flexion/extension (ES) and voluntary knee flexion/extension (VOL) on an isokinetic dynamometer. In CONTROLS, exercise heart rate was significantly increased during ES (94 ± 6 bpm) and VOL (85 ± 4 bpm) over PAS (69 ± 4 bpm), but no changes were observed in SCI individuals. Stroke volume was significantly augmented in SCI during ES (59 ± 5 ml) compared to PAS (46 ± 4 ml). The results of this study suggest that, in able-bodied humans, Group III and IV leg muscle afferents contribute to increased cardiac output during exercise primarily via augmented heart rate. In contrast, SCI achieve raised cardiac output during ES leg exercise via increased venous return in the absence of any change in heart rate.


2015 ◽  
Vol 2 (2) ◽  
pp. 72
Author(s):  
Slamet ' ◽  
Ali Mandan ◽  
Ardiah Juita ◽  
Ridwan Sinurat

This study is correlational research that aims to find the contribution of leg muscleexplosive power to yield long jump squat style. The student sample was the son of varsity sportscoaching education Riau semester totaling 42 people. As the independent variable is theexplosive power leg muscle while dependent variable is the result of the long jump jongok style.Data (x) obtained from the test results without the leading long jump (standing board jump) toassess leg muscle explosive power while data (y) obtained from testing the long jump squat styleusing the prefix. Data were analyzed with statistical normality test is a test last lilifors alsoanalyzed the data to look for the correlation coefficient, and then proceed to test "t" after itsought the contribution. From the results of data processing for the normal distribution of dataobtained for the provision of data (x) and abnormally distributed in terms of data (y). r = 0.32,then through the test "t", t_ (count>) ttabel then there is a significant relationship between theexplosive muscle power with the outcome long jump squat style, via analysis of leg muscleexplosive power of determination have contributed 10.24% and 89 , 76% was contributed byother factors.


2020 ◽  
Vol 54 (5) ◽  
pp. 23-28
Author(s):  
E.V. Fomina ◽  
◽  
T.B. Kukoba ◽  

Testing of 25 cosmonauts showed that the amount of resistance training weight loading in long-term space mission influences dynamics of the leg-muscle strength and velocity recovery. On Earth, the loads equal from 70 to 130 % of the body mass is sufficient for keeping up endurance and maximum strength moments of shin and thigh muscles. In the group of cosmonauts who had not used the strength training device or chosen loads less than 30 % of the body mass the leg-muscle maximum strength and thigh endurance were decreased substantially on day 4 of return and all the more by day 15 back on Earth.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhenhui Yang ◽  
Tiev Miller ◽  
Zou Xiang ◽  
Marco Y. C. Pang

AbstractThis randomized controlled trial aimed to evaluate the effects of different whole body vibration (WBV) frequencies on concentric and eccentric leg muscle strength, bone turnover and walking endurance after stroke. The study involved eighty-four individuals with chronic stroke (mean age = 59.7 years, SD = 6.5) with mild to moderate motor impairment (Fugl-Meyer Assessment lower limb motor score: mean = 24.0, SD = 3.5) randomly assigned to either a 20 Hz or 30 Hz WBV intervention program. Both programs involved 3 training sessions per week for 8 weeks. Isokinetic knee concentric and eccentric extension strength, serum level of cross-linked N-telopeptides of type I collagen (NTx), and walking endurance (6-min walk test; 6MWT) were assessed at baseline and post-intervention. An intention-to-treat analysis revealed a significant time effect for all muscle strength outcomes and NTx, but not for 6MWT. The time-by-group interaction was only significant for the paretic eccentric knee extensor work, with a medium effect size (0.44; 95% CI: 0.01, 0.87). Both WBV protocols were effective in improving leg muscle strength and reducing bone resorption. Comparatively greater improvement in paretic eccentric leg strength was observed for the 30 Hz protocol.


2021 ◽  
pp. 1-10
Author(s):  
Elisabet Hammarén ◽  
Lena Kollén

Background: Individuals with myotonic dystrophy type 1 (DM1) are known to stumble and fall, but knowledge is scarce regarding dynamic stability in this disorder. Objective: To describe disease progress regarding muscle force, dynamic stability and patient reported unintentional falls during a ten-year period, in individuals with DM1. Methods: Quantification of isometric muscle force in four leg muscle groups and assessment of Timed 10-meter-walk in maximum speed (T10max), Timed Up&Go (TUG) and Step test (STEP) were performed at three occasions in a DM1 cohort, together with self-reported falls. Results: Thirty-four people (m/f:11/23, age:50.2 + /–9.4) participated. The muscle force loss after ten years was large in the distal ankle muscles. A steeper force decrease was seen in most muscles between year five and ten compared to the former five-year period. Males reported more falls than females, 91%vs 35%had fallen last year. A positive correlation, ρ= 0.633, p <  0.001, was shown between walking time (T10max) and number of falls. Frequent fallers were only seen among those with slower walk (T10max >  10seconds), and fewer steps in the STEP test (STEP≤5 steps). Conclusions: A diminishing leg muscle strength and worse dynamic stability were seen in the group, with a steeper decrease in the latter five years. Weak ankle dorsiflexors, a slower walk and difficulties to lift the forefoot were related to frequent falls.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 491.2-491
Author(s):  
M. Tada ◽  
Y. Yamada ◽  
K. Mandai ◽  
N. Hidaka

Background:We previously reported that the prevalence of sarcopenia was 28% in patients with rheumatoid arthritis (RA) in a cohort study 1. RA patients have a high risk of falls and fractures 2. However, the predictors of falls and fractures in RA patients are not known.Objectives:Whether evaluation of muscle mass and function at baseline could predict falls and fractures during four-year follow-up was investigated.Methods:The four-year follow-up data from a prospective, observational study (CHIKARA study: Correlation researcH of sarcopenIa, sKeletal muscle and disease Activity in Rheumatoid Arthritis) were used. Muscle mass was measured by a body impedance analyzer, and leg muscle mass was calculated. The leg muscle score (max: 100, min: 0) reflected the ratio of leg muscle mass to overall weight. Grip strength as an indicator of muscle function was evaluated using a digital, hand-held, isokinetic dynamometer. The correlations between muscle mass or function and falls or fractures were analyzed by survival rates and Cox hazard ratios. Leg muscle mass and grip strength were investigated by receiver operating characteristic (ROC) curve analysis for correlations with falls or fractures.Results:A total of 100 RA patients (female: 78%, mean age: 66.1 years) were enrolled; 35 patients had falls, and 19 patients had fractures during the four-year follow-up. The leg muscle score, grip strength, age, and fractures at baseline were significantly correlated with falls. The cut-off values of the leg muscle score and grip strength were calculated to be 84.5 points (sensitivity: 0.79, specificity: 0.43) and 15.9 kg (sensitivity: 0.56, specificity: 0.70), respectively, by ROC curve analysis. The patients were divided into four groups by their leg muscle scores and grip strength; the numbers of falls and fractures are shown in Table 1 for each group. The fall-free survival rate was significantly lower in the group with low leg muscle score and low grip strength (35.3%) than in the other groups (P=0.002) (Figure 1). The hazard ratio for the both low group was significantly increased, 3.6-fold (95%CI: 1.1-11.5), compared to that in the both high group.Table 1.Numbers of falls and fractures by category of leg muscle score and grip strengthLG + GS+(n=34)LG - GS+(n=12)LG + GS-(n=37)LG - GS-(n=17)P value*Falls, N6515110.010Fractures, N34660.072LG+: leg muscle score >84.5 points, GS+: grip strength >15.9kg, LG-: leg muscle score ≤84.5 points, GS+: grip strength ≤15.9kg*: compared in four groups by Kruskal-Walls test.Figure 1.Fall-free survival rate in the four groupsConclusion:RA patients with both low leg muscle score and low grip strength at baseline were at high risk for falls during the four-year follow-up period. Evaluation of muscle mass and function can predict falls in RA patients.References:[1]Tada, M., Yamada, Y., Mandai, K. & Hidaka, N. Matrix metalloprotease 3 is associated with sarcopenia in rheumatoid arthritis - results from the CHIKARA study. Int J Rheum Dis21, 1962-1969, doi:10.1111/1756-185X.13335 (2018).[2]van Staa, T. P., Geusens, P., Bijlsma, J. W., Leufkens, H. G. & Cooper, C. Clinical assessment of the long-term risk of fracture in patients with rheumatoid arthritis. Arthritis Rheum54, 3104-3112, doi:10.1002/art.22117 (2006).Disclosure of Interests:None declared


Sign in / Sign up

Export Citation Format

Share Document