scholarly journals Synthesis of Chitosan from Crab’s Shell Waste (Portunus pelagicus) in Mertasinga-Cirebon

Author(s):  
Nurwanti Fatnah ◽  
Dewiantika Azizah ◽  
Mutiara Dwi Cahyani
2016 ◽  
Author(s):  
Maria Angelica M. Duque ◽  
Rhowell N. Tiozon ◽  
Rebecca C. Nueva España

AbstractNanotechnology and its promises for clinical translation to targeted drug delivery with limited accompanying toxicity provide exciting research opportunities that demands multidisciplinary approaches. The colloidal metallic systems have been recently investigated in the area of nanomedicine. Gold nanoparticles have found themselves useful for diagnostics and drug delivery applications. In this study, we have reported a novel method for the synthesis of gold nanoparticles using natural, biocompatible and biodegradable chitosan which came from deacetylating chitin from Portunus Pelagicus. It serves many purposes, as a reducing agent, stabilizer and absorption and penetration enhancer.Erythropoietin would have high loading efficiency with chitosan reduced gold nanoparticles; the binding is predominantly through hydrogen bonding. Chitosan reduced gold nanoparticles improve the pharmacodynamics and cellular uptake of Erythropoietin across mucosal sites and have immunoadjuvant properties.There is almost 50 % shell waste in crustacean industry. It is resourceful if it would be bioconverted. The process of bioconversion is deproteination, demineralization and deacetylation to obtain chitosan. In synthesizing gold nanoparticles, 1.48 × 10−2 M chloroauric acid will be reduced by heating for 15 minutes in 100mL chitosan solution prepared in 1% acetic acid to yield a ruby-red solution. Erythropoietin would be loaded into it and will undergo 13,000rpm of centrifuge followed by calculating the loading efficiency.


2020 ◽  
Vol 9 (2) ◽  
pp. 151-158
Author(s):  
Miftahul Akhyar Ghofari ◽  
Ali Ridlo ◽  
Rini Pramesti

ABSTRAK: Glukosamin merupakan monomer dari kitosan yang dapat diperoleh dari  limbah  cangkang rajungan (P pelagicus). Glukosamin dibutuhkan  dalam pembentukan dan perbaikan tulang rawan dan jaringan tubuh lainnya. Penelitian ini bertujuan untuk mengetahui karakteristik glukosamin dari limbah cangkang rajungan. Proses isolasi kitosan rajungan terdiri dari deproteinasi dengan NaOH 3N, demineralisasi dengan HCl 1N, dan deasetilasi dengan NaOH 50%. Kitosan yang diperoleh dianalisis karakteristik dan derajat deasetilasinya, selanjutnya kitosan dihidrolisis secara kimia dengan larutan HCl 20% pada suhu kamar selama 4 jam. Glukosamin yang dihasilkan dihitung rendemen, loss on drying (LoD), tingkat kelarutan dan derajat deasetilasinya. Hasil penelitian menunjukan rendemen kitosan cangkang rajungan adalah 11,3%, berwarna putih, tidak berbau, kadar air 9,2%, kadar abu 5,4%, dan derajat deasetilisasi 90,8%. Rendemen glukosamin sebesar 8,6%, dengan nilai Loss on Drying 1,3%, kelarutan sebesar 72% dan derajat deasetilisasi sebesar 96,95%. Spektra infrared menunjukan adanya gugus -NH, -OH, -CH dan –C=O yang sesuai dengan yang terdapat pada glukosamin. ABSTRACT: Glucosamine is a monomer from chitosan which can be obtained from small crab shell (P pelagicus) waste. Glucosamine is needed in the formation and repair of cartilage and other body tissues. This study aims to determine the characteristics of glucosamine from small crab shell waste. The process of isolating chitosan from small crab shells consisted of deproteination with 3N NaOH, demineralization with 1N HCl, and deacetylation with 50% NaOH. The chitosan obtained was analyzed its characteristics and degrees of deacetylation, then chitosan was chemically hydrolyzed with 20% HCl solution at room temperature for 4 hours. The resulting glucosamine is then calculated yield, loss on drying (LoD), solubility level and degree of deacetylation. The results showed that the yield of chitosan crab shells was 11.3%, white, odorless, 9.2% moisture content, 5.4% ash content, and 90.8% deacetylation rate. Glucosamine yield was 8.6%, with a Loss on Drying value of 1.3%, solubility of 72% and the degree of deacetylation of 96.95%. Infrared spectra show the presence of -NH, -OH, -CH and -C = O groups that match those found in glucosamine


2021 ◽  
pp. 125995
Author(s):  
So Yeon Yoon ◽  
Seok Byum Jang ◽  
Kien Tiek Wong ◽  
Hyeseong Kim ◽  
Min Ji Kim ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1887
Author(s):  
Viviana Quintero ◽  
Arturo Gonzalez-Quiroga ◽  
Angel Darío Gonzalez-Delgado

The conservation and proper management of natural resources constitute one of the main objectives of the 2030 Agenda for Sustainable Development designed by the Member States of the United Nations. In this work, a hybrid strategy based on process integration is proposed to minimize freshwater consumption while reusing wastewater. As a novelty, the strategy included a heuristic approach for identifying the minimum consumption of freshwater with a preliminary design of the water network, considering the concept of reuse and multiple pollutants. Then, mathematical programming techniques were applied to evaluate the possibilities of regeneration of the source streams through the inclusion of intercept units and establish the optimal design of the network. This strategy was used in the shrimp shell waste process to obtain chitosan, where a minimum freshwater consumption of 277 t/h was identified, with a reuse strategy and an optimal value of US $5.5 million for the design of the water network.


2021 ◽  
Author(s):  
Budiani F. Endrawati ◽  
Niar K. Julianti ◽  
Azmia R. Nafisah ◽  
Chandra S. Rahendaputri ◽  
Endah Mutiara

2021 ◽  
Vol 1092 (1) ◽  
pp. 012001
Author(s):  
Khairunisa Muthusamy ◽  
Rahimah Embong ◽  
Rajan Jose ◽  
Nabilla Mohamad ◽  
Nur Syahira Hanim Kamarul Bahrin

2019 ◽  
Vol 212 ◽  
pp. 775-786 ◽  
Author(s):  
Chathurani Chandrasiri ◽  
Tesfamichael Yehdego ◽  
Sulapha Peethamparan

Sign in / Sign up

Export Citation Format

Share Document