scholarly journals The Shear Bearing Capacity Mechanism Analysis of Steel Pipe Steel Reinforced Concrete Composite Column

Author(s):  
Bing Wang ◽  
Xiao Liu ◽  
Tian-Cheng Xu
2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Yongjun Lin ◽  
Kaiqi Liu ◽  
Tianxu Xiao ◽  
Chang Zhou

In this paper, in order to investigate the shear mechanism and shear capacity of framework joints of steel-reinforced concrete-filled circular steel tube (SRCFCST), a numerical finite element model reflecting the mechanical behavior of framework joints of SRCFCST column-reinforced concrete beam is established through simulating concrete by the damage plastic constitutive model and simulating steel by the ideal elastic-plastic material, and its effectiveness is verified by experimental data. On account of uniform distribution of circular steel reinforced around the section and without definite flange and web, the shear mechanism of the framework joints of SRCFCST is analyzed on the basis of equivalent circular steel tube (CST) to the rectangular steel tube. The method for calculating the superposed shear bearing capacities of the joint core area is proposed, which is composed of four parts, i.e., concrete inside tube, concrete outside tube, hooping and steel-reinforced web; and the corresponding formulas for calculating shear bearing capacity are established. The comparative analysis of joints’ shear bearing capacity indicates that the results of numerical simulation and shear bearing capacity formulas coincide well with the experimental values, which can provide reference for the nonlinear analysis and engineering design of similar joints.


2010 ◽  
Vol 163-167 ◽  
pp. 191-195
Author(s):  
Bai Ling Chen ◽  
Lian Guang Wang ◽  
Guo Peng Qin

GFRP tube filled with steel-reinforced concrete composite column, GSRC, is a new kind of composite column, in which the (shaped steel) reinforcing steel bar is set and the concrete is poured into GFRP tube. Under the action of eccentric loading, the damage signs of the composite columns with smaller and larger eccentricity were respectively that GFRP tube of compressive zone was crushed and the fiber of GFRP tube of tensional zone was ruptured. The tight hoop effect of the concrete given by GFRP tube only existed in compressive zone, and the restriction to the concrete of tensile zone was unobvious. The shaped steel inside GFRP tube had a positive effect on the bending rigidity and the bearing capacity of the member. Using the limit equilibrium theory, the calculation formula of the bearing capacity of GSRC subjected to eccentric loading was created. The calculated results agreed well with the experimental ones.


2012 ◽  
Vol 455-456 ◽  
pp. 1079-1083
Author(s):  
Wei Jun Yang ◽  
Hong Jia Huang ◽  
Wen Yu Jiang ◽  
Yi Bin Peng

Shantou atmospheric salt-fog environment is simulated with the comprehensive salt spray test chamber. By using reinforced concrete short beams under different water-cement radio, different corrosion time, the inclined section degradation rules of the corrosive reinforced concrete members are researched for establishing shear capacity of short beam formulas in salt-fog environment.


2011 ◽  
Vol 243-249 ◽  
pp. 929-933
Author(s):  
Na Ha ◽  
Lian Guang Wang ◽  
Shen Yuan Fu

In order to improve the bearing capacity of SRC which is related with deformation and stiffiness, SRC beams should be strengthened by CFRP. Based on the experiment of six pre-splitting steel reinforced concrete beams strengthened with (Prestressed) CFRP sheets, the deformation of beams are discussed. Load-deformation curves are obtained by the experiment. Considering the influence of intial bending moment on SRC beams, the calculated deformation formulas of SRC beams strengthened by (Prestressed) CFRP are deduced. The results showed that the load-deformation curves of normal and strengthened beams respectively showed three and two linear characteristics. The theoretical results which calculated by the formulas of deformation are well agreement with the experimental results.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6860
Author(s):  
Jun Wang ◽  
Yuxin Duan ◽  
Yifan Wang ◽  
Xinran Wang ◽  
Qi Liu

To investigate the applicability of the methods for calculating the bearing capacity of high-strength steel-reinforced concrete (SRC) composite columns according to specifications and the effect of confinement of stirrups and steel on the bearing capacity of SRC columns. The axial compression tests were conducted on 10 high-strength SRC columns and 4 ordinary SRC columns. The influences of the steel strength grade, the steel ratio, the types of stirrups and slenderness ratio on the bearing capacity of such members were examined. The analysis results indicate that using high-strength steel and improving the steel ratio can significantly enhance the bearing capacity of the SRC columns. When the slenderness ratio increases dramatically, the bearing capacity of the SRC columns plummets. As the confinement effect of the stirrups on the concrete improves, the utilization ratio of the high-strength steel in the SRC columns increases. Furthermore, the results calculated by AISC360-19(U.S.), EN1994-1-1-2004 (Europe), and JGJ138-2016(China) are too conservative compared with test results. Finally, a modified formula for calculating the bearing capacity of the SRC columns is proposed based on the confinement effect of the stirrups and steel on concrete. The results calculated by the modified formula and the finite element modeling results based on the confinement effect agree well with the test results.


2012 ◽  
Vol 455-456 ◽  
pp. 1079-1083
Author(s):  
Wei Jun Yang ◽  
Hong Jia Huang ◽  
Wen Yu Jiang ◽  
Yi Bin Peng

2011 ◽  
Vol 250-253 ◽  
pp. 2857-2860 ◽  
Author(s):  
Yu Zhuo Wang ◽  
Chuang Guo Fu

Prestressed steel reinforced concrete structure, compared with other concrete structure has its unique advantages. So it is mainly used in large span and conversion layers. With the popularization of this structure,more attention should be payed on fire resistance performance. On the basis of reasonable assume,two steps model is used as concrete high strength calculation model. Simplified intensity decreased curve is used as rebar,steel and prestressed. Two ultimate bearing capacity formulas of prestressed steel reinforced concrete beam are established. One is for the beam whose tensile area is under fire, the other is for the beam whose compression area is under fire. Prestressed steel reinforced concrete structure has both prestressed concrete structure’s advantages and steel reinforced concrete structure ’s advantage. Steel reinforced concrete is used to improve the bearing capacity of the structure. Prestressed steel is used to improve the ultimate state of structure’s performance during normal use. Thereby structure’s performance is better to play. There are many similarities between prestressed steel reinforced concrete structure and steel reinforced concrete structure about fire resistance performance. Because of prestressed steel reinforced concrete structure’s own characteristics, there are still many problems about fire resistance. This paper mainly presented bending terminal bearing capacity of prestressed steel reinforced concrete beam under fire. Established simplified formulae for calculation, it is meet the engineering accuracy requirement.


2013 ◽  
Vol 351-352 ◽  
pp. 342-346
Author(s):  
Tai Hua Yang ◽  
Xiao Yu ◽  
Jian Wu Gong ◽  
Bin Tang ◽  
Yang Zhi Zhong ◽  
...  

According to the domestic and foreign various building codes and a kind of limit fitting formula, to calculate and analyze the compressive bearing capacity of sandwich reinforced concrete beam-column nodes in a high-rising frame structure engineering, and to compare with the results calculated by Midas. They shown those are the facts that cant be neglected, the compressive bearing capacity of the sandwich node core area concrete in beam and plates constraint would improve and the amplitude of improving would be great. But current Chinese building codes haven't included them in the formal design provisions, these ways have to be perfected. In the same time, beam and plate constraint would also have a certain effect to the shear bearing capacity. By contrast, the shear bearing capacity in considering beam and plate constraint would increase 12% to 24%, it would get to 91% of the limit fitting formula calculation value when the short side was sheared, and it is 92% when the long side was sheared. That shown it is quite perfect in considering the effect of the orthogonal beam-plate constraints in domestic seismic code.


Sign in / Sign up

Export Citation Format

Share Document