scholarly journals Influence of a Mixture of Biosolar and Pertamax on Diesel Engine Power and Fuel Consumption

Author(s):  
Poppy Puspitasari ◽  
Paryono Paryono ◽  
Agustian Yohan Effendi ◽  
Marji Marji ◽  
Johan Wayan Dika
2016 ◽  
Vol 46 (7) ◽  
pp. 1200-1205 ◽  
Author(s):  
Javier Solis Estrada ◽  
José Fernando Schlosser ◽  
Marcelo Silveira de Farias ◽  
Fabrício Azevedo Rodrigues ◽  
Alfran Tellechea Martini ◽  
...  

ABSTRACT: This research evaluated the performance of a diesel engine in an agricultural tractor, using Diesel S500 (B5) and mixture with 3% (ED3), 6% (ED6), 9% (ED9), 12% (ED12) and 15% (ED15) of hydrous ethanol. Variables evaluated were the power, torque, specific fuel consumption, torque reserve, speed reserve and elasticity index of engine. Results indicated that using B5 and ED3 the values of torque and engine power not differ, in addition, with the ED3 the fuel consumption was lower than 5.92%. Using ED12, power has reduced in 2.97%, compared with B5, while their fuel consumption had no difference. With ED15, the power was lower 6.30% and the fuel consumption increase 3.77%, both compared with B5. Torque reserve value was increased with increasing the ethanol content in B5, reducing the speed reserve and elasticity index of engine. Ethanol in Diesel S500 (B5) can be used as an alternative fuel in agricultural tractor engines without presenting high changes in the performance, since the ethanol content is at low percentages, up to 12%.


2014 ◽  
Vol 554 ◽  
pp. 505-509
Author(s):  
Mohd Zaini Jamaludin ◽  
Safaruddin Gazali Herawan ◽  
Mohamed Arifin Yusmady ◽  
Ahmad Fauzi

Nowadays, biodiesel from non-edible feedstock is gaining more concern than edible oil to substitute diesel fuel. The purpose of this study is to investigate the performance of low cost single cylinder diesel engine fuelled by regular diesel and B5 biodiesel of castor and jatropha. The experiments were conducted to identify the performance of a low cost single cylinder diesel engine dynamometer, in terms of engine torque, engine power, and brake specific fuel consumption. It was found that these biodiesel can be used as the alternative fuel based on the performance of engine dynamometer, where the results show nearly similar with regular diesel.


2021 ◽  
pp. 30-34
Author(s):  

It is established, that the destruction of carbon deposits when the engine is running on a water-fuel emulsion occurs due to the phenomenon of micro-impact of emulsified fuel droplets, the evaporation rate of which depends on their diameter, pressure and amplitude of the gaseous medium. As a result of the removal of carbon deposits in the engines, there is an increase in the average compression value for the engine cylinders by 8 % and the engine power by 11 %, as well as a decrease in the specific fuel consumption by 10 % and the smoke of the exhaust gases by 16 %. Keywords: engine, water-fuel emulsion, micro-impact, emulsified fuel, compression. [email protected]


Author(s):  
Şenol Durmuşoğlu ◽  
ERGİN KOSA

To logistically maintain a fuel supply is a certain issue for the military. NATO prefers single fuel concept to cancel out troubles in fuel transport and storage. To overcome this problem, kerosene-based F-34 jet fuel used in aviation has been chosen as a single fuel for a land-based vehicle in this research. In the study, feasibility of using F-34 jet fuel in a diesel engine has been investigated and the performance of the jet fuel has been compared with a conventional F-54 diesel fuel. The engine parameters of M52 such as power and torque character for both F-34 jet fuel and F-54 diesel fuel has been achieved. Also, the experiments on diesel engine including fuel consumption measurements under certain engine speeds and torques has been done for both fuels. Moreover, wear on fuel pumps of Magirus Unimog and M.A.N truck has been measured during long term tests operating with F-34 and F-54 fuels, respectively. It is observed that there is no certain difference in engine power and torque character between using F-34 and F-54 fuel.


2015 ◽  
Vol 18 (4) ◽  
pp. 31-38
Author(s):  
Toan Danh Vo ◽  
Cong Thanh Huynh

In this paper, a simulation of DI diesel engine 1 cylinder, model RV165-2 is used to investigate the effect of intake manifold design on the volumetric efficiency and characteristics by using AVL BOOST software. The proposed plans are evaluated and compared with available models. Conditions of simulation is based on the structure of engine and parameters from experimental test. The parameters of performance, combustion and emission characteristics are selected as evaluation criteria. The results of optimizing intake manifold are increasing volumetric efficiency, ability to blend the mixture of fuel and air, better combustion and increasing engine power, reducing fuel consumption and emission.


2013 ◽  
Vol 734-737 ◽  
pp. 2386-2390 ◽  
Author(s):  
Tsun Lirng Yang ◽  
Cheng Wei Lin

In this study, the vertical single cylinder YANMAR YDG3700N diesel engine power generator is used to find out the physical changes external to the engine under different fuel consumption rates and loads. The fuels used are what a Class A fishing vessel uses, which is blended with four different fuel additives available on the market to compare the combustion of the fuels with the addition of the additives in an attempt to find out the effect on the engine. The result of the experiment shows measurable external physical properties of the engine and fuel consumption rates under the combustion with fuels added with different additives in different proportions under different loading: the changes in engine speed and temperature of the exhaust will serve as a reference for choosing different fuel additives in the market and for better understanding of the properties of the fuel additives.


2013 ◽  
Vol 860-863 ◽  
pp. 1685-1689
Author(s):  
Ze Fei Tan ◽  
Li Zhong Shen ◽  
De Cai Jin ◽  
Yang Wen Bin Ou

To study the effect of the biodiesel on the performance of the high pressure common rail diesel engine performance, a experiment is conducted about the high pressure common rail diesel engine uses diesel fuel and different blending ratio of biodiesels. The results show that with the rising of the altitude, the engine power and the brake specific fuel consumption reduce, exhaust gas temperature increases; At the same altitude, the engine fueled with different blending ratio of bio-diesel has higher brake specific fuel consumption in comparison with fueled engine, but it has lower power, with the increase in bio-diesel blending ratio, engine power, fuel consumption increase.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1135
Author(s):  
Zhiqing Zhang ◽  
Jiangtao Li ◽  
Jie Tian ◽  
Guangling Xie ◽  
Dongli Tan ◽  
...  

In this paper, a four-stroke engine diesel was employed to investigate the effects of different fuel mixture ratios of diesel and ethanol on engine performance and emission characteristics in terms of cylinder temperature, heat release rate, brake power, brake thermal efficiency, brake specific fuel consumption, and cylinder pressure. The corresponding simulation model of diesel engine was developed by AVL-Fire coupled CHEMKIN code, and an improved chemical kinetics mechanism containing 34 reactions and 19 species was employed to simulate the fuel spray process and combustion process. The simulation model was validated by experimental results under 100% and 50% load conditions and used to simulate the combustion process of diesel engine fueled with pure diesel and diesel–ethanol blends with 10%, 20%, and 30% ethanol by volume, respectively. The results showed that the increase of ethanol content in the blended fuel had a certain negative impact on the performance characteristic of diesel engine and significantly improved the emission characteristic of the engine. With the ethanol proportion in the blended fuel increased to 10%, 20%, and 30%, the brake thermal efficiency of the engine increased by 2.24%, 4.33%, and 6.37% respectively. However, the brake-specific fuel consumption increased by 1.56%, 3.49%, and 5.74% and the power decreased by 1.58%, 3.46%, and 5.54% respectively. In addition, with the ethanol proportion in the blended fuel increased to 10%, 20%, and 30%, the carbon monoxide emission decreased by 34.69%, 47.60%, and 56.58%, and the soot emission decreased by 7.83%, 15.24%, and 22.52% respectively. Finally, based on the combining fuzzy and grey correlation theory, nitrogen oxide emission has the highest correlation with engine power and brake-specific fuel consumption. The values reach 0.9103 and 0.8945 respectively. It shows that nitrogen oxide emission and cylinder pressure have a significant relationship on engine power and brake-specific fuel consumption.


Author(s):  
Petar Kazakov ◽  
Atanas Iliev ◽  
Emil Marinov

Over the decades, more attention has been paid to emissions from the means of transport and the use of different fuels and combustion fuels for the operation of internal combustion engines than on fuel consumption. This, in turn, enables research into products that are said to reduce fuel consumption. The report summarizes four studies of fuel-related innovation products. The studies covered by this report are conducted with diesel fuel and usually contain diesel fuel and three additives for it. Manufacturers of additives are based on already existing studies showing a 10-30% reduction in fuel consumption. Comparative experimental studies related to the use of commercially available diesel fuel with and without the use of additives have been performed in laboratory conditions. The studies were carried out on a stationary diesel engine СМД-17КН equipped with brake КИ1368В. Repeated results were recorded, but they did not confirm the significant positive effect of additives on specific fuel consumption. In some cases, the factors affecting errors in this type of research on the effectiveness of fuel additives for commercial purposes are considered. The reasons for the positive effects of such use of additives in certain engine operating modes are also clarified.


2013 ◽  
Vol 60 (2) ◽  
pp. 185-197 ◽  
Author(s):  
Paweł Sulikowski ◽  
Ryszard Maronski

The problem of the optimal driving technique during the fuel economy competition is reconsidered. The vehicle is regarded as a particle moving on a trace with a variable slope angle. The fuel consumption is minimized as the vehicle covers the given distance in a given time. It is assumed that the run consists of two recurrent phases: acceleration with a full available engine power and coasting down with the engine turned off. The most fuel-efficient technique for shifting gears during acceleration is found. The decision variables are: the vehicle velocities at which the gears should be shifted, on the one hand, and the vehicle velocities when the engine should be turned on and off, on the other hand. For the data of students’ vehicle representing the Faculty of Power and Aeronautical Engineering it has been found that such driving strategy is more effective in comparison with a constant speed strategy with the engine partly throttled, as well as a strategy resulting from optimal control theory when the engine is still active.


Sign in / Sign up

Export Citation Format

Share Document