scholarly journals Effects of Chemical Mutagen (Sodium Azide) on Onion Grown in Organic and Inorganic Fertilized Soil

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Adeoti O.M. ◽  
Sodiq Zainab O ◽  
Adeoye K.A

The effects of chemical agent (Sodium Azide) on Onion growing in organic and inorganic fertile soil was to be examined during this study. The analysis work was carried out within the green house of the research laboratory technology of the Oke Ogun Science Laboratory Technology, Saki, Oyo State. Onion seeds were soaked inside different beakers containing the mixture of Sodium Azide and water mixed with 10 ml of Phosphate solution for 4 hours. Also, the control was soaked with normal water and 10 ml of Phosphate buffer solution. The treated seeds of onions was planted in plastic containers containing 4.2 g of weighed humus soil within the green house at the Department of research lab Technology of The Oke Ogun polytechnic school, Saki Oyo State. The samples parameter were taken daily for six consecutive months. The result obtained was additionally subjected to statistical analysis by using DMRT techniques. The results showed that the stem length was ranged from 11.39±0.62 and 9.98±0.52 with sample of onion without sodium Azide and inorganic had the highest stem length values and samples of onion with Sodium Azide and inorganic had very cheap stem length. However, the leave length ranged from 29.63±0.12 and 22.45±0.10 with the Onion samples with inorganic and Organic fertilizers which had the highest leave length and sample of onion without Sodium Azide was very low leave length. The results of this study showed that each one the parameters studied within the plant were low with Sodium Azide treatment. The decrease in plant growth, plant heights, root lengths, and Phaonerogam survival, fruit yield per plant and height at maturity with agent concentration. It is hereof suggested that Sodium Azide (NaN3) was expected to produce mutation in onion that area unit extremely liable to harmful pathogens and making them cheap to be useful for farmers.

2021 ◽  
Vol 2 (1) ◽  
pp. 072-078
Author(s):  
Olatunde Micheal Adeoti ◽  
Zainab Sodiq ◽  
Samson Olutope Olufemi ◽  
Kafilat Adenike Komolafe

Tomato (Lycopersicon esculentum); a member of the family Solanacea is a commercially important vegetable throughout the world both for the fresh fruit market and food industries. The research was carried out in the green house at Science Laboratory Technology of the Oke-Ogun Polytechnic, Saki, Oyo State. Improved dry seeds of tomato (Lycopersicon esculentum) was obtained from the Institute of Agriculture Research, (I.A.R&T), Ibadan, Oyo State and were subsequently treated with Sodium Azide aimed at determining the effects of Sodium Azide as a known mutagen on tomato grown with organic and inorganic fertilizer. All the parameters were monitored for six-months with everyday documentation of variants (variables). Highly significant differences were observed in the treatments with respect to the studied parameters (seed germination, seedling survival, seedling height, root length, number of leaves per seedlings, height at maturity, number of branches per plant and fruits per plant) and various chemicals found in the soil sample. Treatment and chemical interactions were similarly highly significant in tomato with Sodium Azide and organic fertilizer with respect to all parameters evaluated and the chemical composition showed better performance compared to tomato seeds grown with inorganic fertilizer. Conversely, Sodium Azide could be utilized as an induced of variability for the improvement of tomato likewise organic fertilizers


1985 ◽  
Vol 17 (10) ◽  
pp. 39-41 ◽  
Author(s):  
A. Schnattinger

Ten litres of tapwater were seeded with 200 µl (8×108 HAV particles) of a commercial (Organon Teknika) suspension of hepatitis A virus. Following WALTER and RÜDIGER (1981), the contaminated tapwater was treated with a two-stage technique for concentration of viruses from solutions with low virus titers. The two-stage technique consists of aluminium hydroxideflocculation (200 mg/l Al2(SO4)3. 18 H2O, pH 5,4-5,6) as first stage, the second stage of a lysis of aluminium hydroxidegel with citric acid/sodium citrate-buffer (pH 4,7; 1 ml/l sample), separation of viruses from the lysate by ultracentrifugation and suspension in 1 ml phosphate buffer solution (pH 7,2). A commercial solid phase enzyme-linked immunosorbent assay (ELISA) was used for the detection of HAV. HAV was detecterl in the 10.000:1 concentrates, but not in the seeded 101 samples. Approximately 4×108 of the inoculated 8×108 HAV particles were found in the 1 ml concentrates. The efficiency of detection is about 50%, the virus concentration 5000-fold. Although the percentage loss of HAV in comparison with concentration by means of membrane filtration is similar, the ultracentrifugation method yields a larger sample/concentrate ratio, so that smaller amounts of HAV can be detected more efficiently because of the smaller end-volume.


2019 ◽  
Vol 11 (30) ◽  
pp. 3866-3873 ◽  
Author(s):  
R. Karthikeyan ◽  
D. James Nelson ◽  
S. Abraham John

Selective and sensitive determination of one of the purine nucleotides, inosine (INO) using a low cost carbon dot (CD) modified glassy carbon (GC) electrode in 0.2 M phosphate buffer solution (pH 7.2) was demonstrated in this paper.


Surfaces ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 191-204
Author(s):  
Edwin S. D’Souza ◽  
Jamballi G. Manjunatha ◽  
Chenthattil Raril ◽  
Girish Tigari ◽  
Huligerepura J. Arpitha ◽  
...  

A modest, efficient, and sensitive chemically modified electrode was fabricated for sensing curcumin (CRC) through an electrochemically polymerized titan yellow (TY) modified carbon paste electrode (PTYMCPE) in phosphate buffer solution (pH 7.0). Cyclic voltammetry (CV) linear sweep voltammetry (LSV) and differential pulse voltammetry (DPV) approaches were used for CRC detection. PTYMCPE interaction with CRC suggests that the electrode exhibits admirable electrochemical response as compared to bare carbon paste electrode (BCPE). Under the optimized circumstances, a linear response of the electrode was observed for CRC in the concentration range 2 × 10−6 M to 10 × 10−6 M with a limit of detection (LOD) of 10.94 × 10−7 M. Moreover, the effort explains that the PTYMCPE electrode has a hopeful approach for the electrochemical resolution of biologically significant compounds. Additionally, the proposed electrode has demonstrated many advantages such as easy preparation, elevated sensitivity, stability, and enhanced catalytic activity, and can be successfully applied in real sample analysis.


1983 ◽  
Vol 105 (4) ◽  
pp. 406-410 ◽  
Author(s):  
A. M. Sallam ◽  
N. H. C. Hwang

Measurement of local velocity fluctuations was made with an L-shaped conical hot-film probe in a submerged circular jet. The experiment was carried out in solutions of washed human red blood cells (RBC) in a phosphate buffer solution (PBS), at hematocrit concentrations (Ht percent) of 10, 19, 29, and 38 percent. The viscosity of the testing solutions was kept at 3.2 c.p. by adding proper amount of dextran. The experiment was conducted at Reynolds numbers (NR) 674, 963, 1255 and 1410, based on the jet exit velocity and exit diameter. Statistical analyses were performed on the recorded instantaneous velocity signals to obtain the root-mean-square (rms) values, the probability density functions (PDF) and the power spectral density functions (PSDF) of the signals. Within the range tested, we noticed an incidental rise in rms values at 19 to 29 Ht percent for NR = 963 similar to those reported earlier in the literature. Further analyses using PDF and PSDF, however, showed neither a trend nor any physical significance of this rise. Based on the analyses of both the PDF and the PSDF, we believe that the incidental rise in rms value can be partially attributed to the high spikes registered by the probe in a high RBC concentrations fluid flow. The bombardment of RBC on the probe thermal boundary layer may cause a characteristic change in the probe response to certain flow phenomenon, at least within the Reynolds number range used in this study. Additional theoretical and experimental information is needed to pin point the nature of this response. We thus suggest that the second and higher moments of the HFA signals obtained in a fluctuating flow field involving a liquid with relatively high contaminant concentrations cannot be interpreted as a simple flow phenomenon.


2015 ◽  
Vol 98 (5) ◽  
pp. 1260-1266 ◽  
Author(s):  
Deng Pan ◽  
Shengzhong Rong ◽  
Guangteng Zhang ◽  
Yannan Zhang ◽  
Qiang Zhou ◽  
...  

Abstract Cyclic voltammetry and differential pulse voltammetry were used to investigate the electrochemical behavior of uric acid (UA) at a CdTe quantum dot (QD) modified the glassy carbon electrode (GCE). CdTe QDs, as new semiconductor nanocrystals, can greatly improve the peak current of UA. The anodic peak current of UA was linear with its concentration between 1.0 × 10–6 and 4.0 × 10–4 M in 0.1 M pH 5.0 phosphate buffer solution. The LOD for UA at the CdTe electrode (1.0 × 10–7 M) was superior to that of the GCE. In addition, we also determined the effects of scan rate, pH, and interferences of UA for the voltammetric behavior and detection. The results indicated that modified electrode possessed excellent reproducibility and stability. Finally, a new and efficient electrochemical sensor for detecting UA was developed.


1983 ◽  
Vol 29 (9) ◽  
pp. 1104-1109 ◽  
Author(s):  
D. K. Arora ◽  
A. B. Filonow ◽  
J. L. Lockwood

Erwinia herbicola, Pseudomonas fluorescens, and P. putida were strongly attracted in vitro to substances exuded by conidia of Cochliobolus victoriae and sclerotia of Macrophomina phaseolina, but not to phosphate buffer solution. Numbers of bacteria attracted to propagules of C. victoriae or M. phaseolina in an unsterilized sandy loam soil were significantly (P = 0.05) greater than background populations occurring in soil saturated with buffer. Chemotactic response was greater to C. victoriae than to M. phaseolina both in vitro and in soil. Results suggest that living fungal propagules may act as attractants for motile bacteria in soil.


2008 ◽  
Vol 47-50 ◽  
pp. 1302-1306 ◽  
Author(s):  
John A. Nychka ◽  
Ding Li

We report our observations concerning the time evolution of surface morphology occurring during the in vitro immersion of bioactive glass surfaces in contact with phosphate buffer solution. We compare regions under intentionally produced residual stresses via micro-indentation to those where no indentation was performed. The sign of the residual stress is shown to be important for predicting dissolution behaviour; compression retards dissolution, whereas tension enhances dissolution. We analyze our results with a simple model for the work of bond dissociation. We report that a highly constrained residual compressive stress state, such as in an indent, leads to a work deficit in comparison to tension, which accounts for the slower dissolution rate of compressed bioactive glass. Such a mechanochemical effect suggests that the presence of residual stresses from the manufacture of biomedical implants and devices could lead to accelerated or delayed dissolution and that careful control of residual stresses should be sought for predictable performance in dissolvable materials.


2006 ◽  
Vol 510-511 ◽  
pp. 798-801
Author(s):  
Hyung Suk So ◽  
Hyun Chul Shin ◽  
Beom Suk Kim ◽  
Yeong Seok Yoo

The purpose of this study is to develop a new system to control effective discharge of active substances such as agricultural chemicals. To synthesize a naturally dissolvable polymer; ε-caprolactone and diglycolide were copolymerized with ethylene glycol as an initiator to produce macrodiol. As macrodiol has hydroxyl groups in both ends, they are modified with methacryloyl chloride for photochemical networking. After standard macromonomer produced by this procedure was physically mixed with methylene blue, it was networked with ultra-violet rays to be filmed. This film is naturally dissolvable and hydrolytic. As a result of hydrolytic test with a crosslinked structure of 10 % methylene blue, it decreased by 9 % for seven weeks in 37 °C phosphate buffer solution (pH = 7). Thus, we verified that active substance can be discharged from a crosslinked structure for a long time at a constant rate under room temperature.


2011 ◽  
Vol 284-286 ◽  
pp. 1764-1769 ◽  
Author(s):  
Vitalijs Lakevics ◽  
Janis Locs ◽  
Dagnija Loca ◽  
Valentina Stepanova ◽  
Liga Berzina-Cimdina ◽  
...  

Sorption experiments of bovine serum albumin (BSA) on hydroxyapatite (HAp) ceramic granules, prepared at three temperatures 900°C, 1000°C and 1150°C were performed at room temperature 18,6 °C and phosphate buffer, pH 5,83; 6.38 and 7,39. Thermal treatment contributed to the decrease of bovine serum albumin immobilization indicating that sorption process depended on HAp ceramics specific surface area and pH values of phosphate buffer solution. However, it was confirmed that granule size was also an important parameter for bovine serum albumin adsorption. As a result of these experiments, the most appropriate adsorption conditions and phosphate buffer pH values influence on to BSA sorption were analyzed.


Sign in / Sign up

Export Citation Format

Share Document