scholarly journals Preparation and characterization of CdS thin film using chemical bath deposition (CBD) technique for solar cell application

2021 ◽  
Vol 12 (3) ◽  
pp. 629-633
Author(s):  
F.T.Z. Toma ◽  
K.M.A. Hussain ◽  
M.S. Rahman ◽  
Syed Ahmed

The structural properties of CBD deposited CdS thin films have been studied by varying the processing parameters and Cd/S ratio of the starting Precursors in order to better understand the growth conditions. A CdS thin film was prepared on glass substrate by CBD method from a bath containing Thiourea and Ammonium hydroxide. The structural analysis was performed by X-ray Diffraction (XRD). The deposited CdS thin film was a cubic phase with small nano crystalline grains. The film was deposited at 60°C for 2 hours. After sintering the film at 300°C for 1 hour the color of the film was changed like dark yellowish and the thickness of the film was obtained 100 nm. The FTIR was done at room temperature over 350 cm-1 to 4500 cm-1 and it showed the existence of different functional group in the sample and their probable source. These studies have allowed us to establish a standard set of conditions for the fabrication of homogeneous and continuous very thin CdS films in laboratory and this preparation technique is also suitable for preparing highly efficient thin film due to its advantages such as simple, large area films, low deposition temperature and low-cost method.

2015 ◽  
Vol 15 (11) ◽  
pp. 9240-9245 ◽  
Author(s):  
Yulisa Yusoff ◽  
Puvaneswaran Chelvanathan ◽  
Qamar Huda ◽  
Md. Akhtaruzzaman ◽  
Mohammad M. Alam ◽  
...  

2015 ◽  
Vol 1731 ◽  
Author(s):  
Chih-Hung Li ◽  
Jian-Zhang Chen ◽  
I-Chun Cheng

ABSTRACTWe investigated the electrical properties of the rf-sputtered HfxZn1-xO/ZnO heterostructures. The thermal annealing on ZnO prior to the HfxZn1-xO deposition greatly influences the properties of the heterostructures. A highly conductive interface formed at the interface between HfxZn1-xO and ZnO thin films as the ZnO annealing temperature exceeded 500°C, leading to the apparent decrease of the electrical resistance. The resistance decreased with an increase of either thickness or Hf content of the HfxZn1-xO capping layer. The Hf0.05Zn0.95O/ZnO heterostructure with a 200-nm-thick 600°C-annealed ZnO exhibits a carrier mobility of 14.3 cm2V-1s-1 and a sheet carrier concentration of 1.93×1013 cm-2; the corresponding values for the bare ZnO thin film are 0.47 cm2V-1s-1 and 2.27×1012 cm-2, respectively. Rf-sputtered HfZnO/ZnO heterostructures can potentially be used to increase the carrier mobility of thin-film transistors in large-area electronics.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Shizuyasu Ochiai ◽  
Kumar Palanisamy ◽  
Santhakumar Kannappan ◽  
Paik-Kyun Shin

Pentacene OFETs of bottom-gate/bottom-contact were fabricated with three types of pentacene organic semiconductors and cross linked Poly(4-vinylphenol) or polycarbonate as gate dielectric layer. Two different processes were used to prepare the pentacene active channel layers: (1) spin-coating on dielectric layer using two different soluble pentacene precursors of SAP and DMP; (2) vacuum evaporation on PC insulator. X-ray diffraction studies revealed coexistence of thin film and bulk phase of pentacene from SAP and thin film phase of pentacene from DMP precursors. The field effect mobility of 0.031 cm2/Vs and threshold voltage of −12.5 V was obtained from OFETs fabricated from SAP precursor, however, the pentacene OFETs from DMP under same preparation yielded high mobility of 0.09 cm2/Vs and threshold value decreased to −5 V. It reflects that the mixed phase films had carrier mobilities inferior to films consisting solely of single phase. For comparison, we have also fabricated pentacene OFETs by vacuum evaporation on polycarbonate as the gate dielectric and obtained charge carrier mobilities as large as 0.62 cm2/Vs and threshold voltage of −8.5 V. We demonstrated that the spin-coated pentacene using soluble pentacene precursors could be alternative process technology for low cost, large area and low temperature fabrication of OFETs.


2009 ◽  
Vol 58 (1) ◽  
pp. 438
Author(s):  
Cai Ya-Ping ◽  
Li Wei ◽  
Feng Liang-Huan ◽  
Li Bing ◽  
Cai Wei ◽  
...  

2015 ◽  
Vol 18 (4) ◽  
pp. 225-230 ◽  
Author(s):  
N. Mendoza-Agüero ◽  
V. Agarwal ◽  
H. I. Villafán-Vidales ◽  
J. Campos-Alvarez ◽  
P. J. Sebastian

Transparent and conductive Al doped zinc oxide (AZO) films were reactively sputtered from metallic targets onto macro-porous silicon (MPS) substrate to fabricate a heterojunction interface structure. A tungsten oxide (WO3) thin film was placed between metallic aluminum back contact and bulk silicon to extract photogenerated holes from the absorber. Due to the susceptibility of PS to naturally oxidize over the period of time, a thin film of SiO2 was thermally grown to stabilize the electrical response of the junction. Such thin layer acts as passive film to prevent recombination and is placed between the p-n junction. Photovoltaic properties of this heterojunction were studied by using the current density-voltage (J-V) measurement under AM 1.5 illumination. The experimental results show an increase in photovoltaic performance of AZO/MPS solar cell with a buffer layers of WO3. Such heterostructures are promising for the development of the low-cost, clean, and durable devices with appreciable light-to-electricity conversion efficiency.


MRS Bulletin ◽  
1993 ◽  
Vol 18 (10) ◽  
pp. 45-47 ◽  
Author(s):  
T. Suntola

Cadmium telluride is currently the most promising material for high efficiency, low-cost thin-film solar cells. Cadmium telluride is a compound semiconductor with an ideal 1.45 eV bandgap for direct light-to-electricity conversion. The light absorption coefficient of CdTe is high enough to make a one-micrometer-thick layer of material absorb over 99% of the visible light. Processing homogenous polycrystalline thin films seems to be less critical for CdTe than for many other compound semiconductors. The best small-area CdTe thin-film cells manufactured show more than 15% conversion efficiency. Large-area modules with aperture efficiencies in excess of 10% have also been demonstrated. The long-term stability of CdTe solar cell structures is not known in detail or in the necessary time span. Indication of good stability has been demonstrated. One of the concerns about CdTe solar cells is the presence of cadmium which is an environmentally hazardous material.


2015 ◽  
Vol 51 (79) ◽  
pp. 14696-14707 ◽  
Author(s):  
B. Susrutha ◽  
Lingamallu Giribabu ◽  
Surya Prakash Singh

Flexible thin-film photovoltaics facilitate the implementation of solar devices into portable, reduced dimension, and roll-to-roll modules. In this review, we describe recent developments in the fabrication of flexible perovskite solar cells that are low cost and highly efficient and can be used for the fabrication of large-area and lightweight solar cell devices.


Solar Energy ◽  
2016 ◽  
Vol 132 ◽  
pp. 547-557 ◽  
Author(s):  
Ming-Hua Yeh ◽  
Shih-Jung Ho ◽  
Guang-Hong Chen ◽  
Chang-Wei Yeh ◽  
Pin-Ru Chen ◽  
...  

2012 ◽  
Vol 131 (3) ◽  
pp. 600-604 ◽  
Author(s):  
Mahesh Chand Sharma ◽  
Balram Tripathi ◽  
Sumit Kumar ◽  
Subodh Srivastava ◽  
Y.K. Vijay

Sign in / Sign up

Export Citation Format

Share Document