scholarly journals Peran Tanaman Aromatik Dalam Menekan Perkembangan Hama Spodoptera litura Pada Tanaman Kubis

Agrologia ◽  
2018 ◽  
Vol 1 (2) ◽  
Author(s):  
Johan A Patty

Plant pests Spodoptera litura is one of the major insect pests that often lowers the cabbage yield. Various control techniques of this pest have been developed, such as the use of botanical pesticides. This study aimed to determine the role of aromatic plants in reducing S. litura population growth and plant damage intensity on cabbage. Experiments used intercropping combinations of cabbage-local basil (‘kemangi’), cabbage-tomato, cabbage-scallion and without aromatic plants as a control. The experimental was arranged in a Randomized Block Design. Parameters measured were larval population, damage intensity and fresh weight of cabbage crops. The results showed that all three cabbage intercropping with the aromatic plants were able to suppress population of S. litura and the resulted damage intensity of cabbage. The treatment of cabbage intercropping with local basil could reduce larval populations of S. litura (to 0.84 larvae) or only 8 larvae per 10 plants and with the lowest crop damage intensity (3.32%) and highest crop weight (486.6 g) per plant.

Author(s):  
Nihad H. Mutlag ◽  
Ameer S. A. Al-Haddad

A field study was conducted to evaluate the efficiency of four microbial insecticides viz. Beauveria bassiana; HaNPV (Helicoverpa armigera Nuclear Polyhedrosis virus); (Bacillus thuringiensisvar.kurstaki 2 gm/L); HaNPV+Bt; neem oil; neem cake and D.D.V.P EC 76% @0.05% at Research Farm SHIATS,Allahabad during rabi season of 2011-2012. The experiment was laid out in randomized block design with seven treatment and replicated thrice. The observation larval populations of H. armigera were recorded one day before treatment was recorded at 3,7, and 10 days after treatments. The larva population of H. armigera appeared in the third week of February (8 the Standard week) and reached its peak of 14.65 larvae in first week of April and decline rapidly with maturation of crop. There was only one peak in the larval population observation in the 1st week. Bacillus thuringiensis was the most effective chemical by D.D.V.P.76%@0.05% . Among the microbial insecticides. HaNPV ,was the most effective followed by HaNPV+Bt and neem cake . The combination treatments were less effective than the individual treatment neem oil and B. bassiana were the least effective treatment in reducing the larval population of Heliverpa armigera.


2011 ◽  
Vol 51 (1) ◽  
pp. 38-43 ◽  
Author(s):  
Jagdev Kular ◽  
Sarwan Kumar

Quantification of Avoidable Yield Losses in OilseedBrassicaCaused by Insect PestsA six year field study was conducted from 2001-2002 to 2006-2007 at Punjab Agricultural University, Ludhiana, India to study the losses in seed yield of differentBrassicaspecies (B. juncea, B. napus, B. carinata, B. rapaandEruca sativa) by the infestation of insect pests. The experiment was conducted in two different sets viz. protected/sprayed and unprotected, in a randomized block design, with three replications. Data on the infestation of insect pests, and seed yield were recorded at weekly intervals and at harvest, respectively. The loss in seed yield, due to mustard aphid and cabbage caterpillar, varied from 6.5 to 26.4 per cent.E. sativasuffered the least loss in seed yield and harboured the minimum population of mustard aphid (2.1 aphids/plant) and cabbage caterpillar (2.4 larvae/plant). On the other hand,B. carinatawas highly susceptible to the cabbage caterpillar (26.2 larvae/plant) and suffered the maximum yield loss (26.4%).


AgriPeat ◽  
2019 ◽  
Vol 20 (01) ◽  
pp. 19-26
Author(s):  
Admin Journal

ABSTRACTThe role of Trichocompost and KCl fertilizer to control Fusarium wilt disease on onion in sandy soil. Fusarium wilt on onion is an interesting disease it is can loss the onion yield. The purpose of research to study trichocompost and KCl fertilizer role to control Fusarium wilt disease on ann onion. The research design used a Factorial Randomized Block Design with 2 factors. The first factor is 4 levels trichocompost, it is: without trichocompost (T0), trichocompost 10 t.ha-1 dosage (T1), trichocompost 20 t.ha-1 dosage (T2), trichocompost 30 t.ha-1 dosage (T3). The second factor is 3 levels KCl fertilizer, it is: without KCl (K0), KCl 100 kg.ha-1 dosage (K1), KCl 200 kg.ha-1 dosage (K2). Result of this research showed the application of trichocompost 10 t.ha-1 dosage and KCl 100 kg.ha-1 dosage can inhibit Fusarium wilt incubation time, can inhibit the patogen development with effective value 89,23%, the single factor it is aplication trichocompost 10 t.ha-1 dosage and trichocompost 30 t.ha-1 dosage not significant to dried onion bulb weight per clump of onion plant.Key words: Trichocompost, KCl fertilizer, Fusarium wilt disease, onion, sandy soil.ABSTRAKPenyakit layu Fusarium merupakan salah satu penyakit penting dapat menurunkan produksi bawang merah hingga 50%. Tujuan penelitian untuk mengetahui peranan trichokompos dan pupuk KCl dalam mengendalikan penyakit layu fusarium pada tanaman bawang merah. Penelitian menggunakan Rancangan Acak Kelompok faktorial dua faktor perlakuan. Faktor pertama 4 taraf dosis trichokompos yaitu: tanpa trichokompos (T0), trichokompos dosis 10 t.ha-1 (T1), trichokompos dosis 20 t.ha-1 (T2), trichokompos dosis 30 t.ha-1 (T3). Faktor kedua 3 taraf dosis pupuk KCl yaitu: tanpa pupuk KCl (K0), pupuk KCl dosis 100 KCl kg.ha-1 (K1), pupuk KCl dosis 200 KCl kg.ha-1 (K2). Hasil penelitian menunjukkan pemberian trichokompos 10 t.ha-1 dan pupuk KCl 100 kg.ha-1 dapat memperpanjang masa inkubasi penyakit, menekan serangan penyakit layu Fusarium dengan nilai efektivitas sangat baik (89,23%), perlakuan tunggal trichokompos dosis 10 t.ha-1 tidak berbeda nyata dengan dosis 30 t.ha-1 terhadap bobot umbi kering per rumpun tanaman bawang merah.Kata kunci: penyakit layu Fusarium, pupuk KCl, tanah berpasir, tanaman bawang merah, trichokompos.


AGRICA ◽  
2019 ◽  
Vol 1 (2) ◽  
pp. 1-8
Author(s):  
Maria Goreti Firma

This study aims to determine the effect of tobacco plant extracts on mortality of armyworm pests (Spodoptera litura F.) and determine the optimum concentration of tobacco leaf extracts on mortality of armyworm caterpillars on mustard plants in the field. The design used in this study was a Randomized Block Design (RBD) consisting of 5 treatments and 4 replications namely T1: 175 ml/L concentration of tobacco leaf extract, T2: 350 ml/L concentration of tobacco leaf extract T3: Concentration of 525 ml/L tobacco leaf extract, T4: Concentration of 700 ml/L tobacco leaf extract, T5: Concentration of 875 ml/L of tobacco leaf extract. The observation variables in this study were pest mortality (%), damage intensity (%), plant fresh weight, and fresh weight per hectare (ton). The results showed that the concentration of tobacco leaf extracts significantly affected the mortality of Spodoptera litura F. At the concentration of T5 treatment (875 ml) were the lowest damage, pest mortality, fresh weight of the mustard plant, and fresh weight per hectare of was 9.75%, 88%, 109.25 gr, and27.31 tons respectively.


2018 ◽  
Vol 10 (4) ◽  
pp. 246-250 ◽  
Author(s):  
SOPIALENA SOPIALENA ◽  
SURYA SILA ◽  
ROSFIANSYAH ROSFIANSYAH ◽  
JULI NURDIANA

Sopialena, Sila S, Rosfiansyah, Nurdiana J. 2018. The role of neem leaves as organic pesticides in chili pepper (Capsicum frutescens). Nusantara Bioscience 10: 246-250. The agricultural crops and horticultural plants are always under constant assault caused by diseases, insect pests, viruses, and other pathogens which may substantially reduce yield. Chili Pepper (Capsicum annum L.) is a popular horticultural plant of the Solanaceae family in Indonesia. Some serious diseases widely found in chili peppers, are anthracnose (Colletotrichum capsici), leaf spot (Cercospora capsici) and fruit rot (Phytophthora capsici). To manage the potential problems, this study is aimed to provide an explanatory knowledge of the use of plant-based pesticide to control the diseases in chili peppers. The information is meant to fill the knowledge gaps in the use of plant-based pesticide to control the chili diseases. The use of nonchemical pesticide benefits not only the environment but also as an organic strategy for disease management. This research used a randomized complete block design (RCBD) categorized into four groups and six different treatments. The organic pesticides were prepared from the extract of neem leaves, soursop leaves, lemongrass extract, tuba root extract, and kenikir/Cosmos caudatus extract). The result indicates that neem leaves are the most effective organic pesticides to control the chili pepper disease in Indonesia.


EUGENIA ◽  
2015 ◽  
Vol 21 (1) ◽  
Author(s):  
J. Rimbing ◽  
J. Pelealu ◽  
D. Sualang

ABSTRACT   The research was arranged in a randomized block design (RBD), with 10 treatments and 3 replications. To get the active insects pests, net sweepings were done for the flying insects, while other pests were observed directly on the plants. Collecting data of plant damages were made by systematic diagonal lines, except for viruses, census was conducted on each experimental plot.  The results of this experiment documented 12 species of insect pests attacking soybean plants. Soybean pest populations were relatively low, except for Aphis glycine that was quite high. In all treatments, plant damage caused by sucking pest Piezodorus sp and Riptortus linearis were relatively low of 1.53 % to 1.94 %; it indicated an insignificant effect to decline the production. Crop damages by virus showed a significant effect. The lowest virus attacks found on compost of 5 tons per ha with 43 plants infected per treatment, the highest virus attack showed on combination of 5 tons compost per ha + inorganic fertilizer + mulch, in which there were 274 infected plants per treatment. Apparently virus attacks gave impact on soybean production. The highest production were documented on treatment of 5 tons compost per ha with production of 0.55 tons per ha, while the lowest production was found on combination of 5 tons compost per ha + inorganic fertilizer + mulch, in which the production was 0.22 tons per ha. Keywords:  fertilizer, mulch, insect pest, production


Author(s):  
Sagar Anand Pandey ◽  
S. B. Das

A field experiment on evaluation of biopesticides against gram pod borer (Helicoverpa armigera Hub.) on pigeon pea was carried out during kharif season of 2012-13. The experiment was laid out in randomized block design with three replications. Gram pod borer is a major pest of pigeon pea in India. For the management of this pest seven biopesticides were tested along with control. Among the biopesticides, Beauveria bassiana @ 1 liter / ha (1x1012 spores/ml) was found to be most effective biopesticide as it recorded lowest larval population (6.68 larvae / 5plants). The highest larval population was recorded in control (12.61 larvae /5 plants). The least effective treatment was Paecilomyces fumosoreseus (9.31 larvae /5 plants). Similar trend was observed in the grain yield as 1667.55 kg/ha, 709.41kg/ha and 1025.21kg/ha , respectively.


Author(s):  
Nyimas Popi Indriani ◽  
Yuyun Yuwariah ◽  
Ana Rochana ◽  
, Iin Susilawati ◽  
Lizah Khairani

The role of Vesicular Arbuscular Mycorrhiza (VAM) and rock phosphate application on production and nutritional value of centro legumes was studied. The aim of the study was to know the interaction of rock phosphate and VAM and to know the optimum dosage of VAM and rock phosphate on production and nutritional value of centro legumes. The experimental design was randomized block design. The treatments and rock phosphate levels was 0, 100, 200 and 300 kg ha-1 of P2O5 with and without VAM. The results revealed that VAM application increase the plant height and dry matter of centro legumes. The optimum dosage of Rock Phosphate was 200 kg ha-1 of P2O5.


2017 ◽  
Vol 42 (3) ◽  
pp. 457-466 ◽  
Author(s):  
K Priyanka ◽  
HK Jaiswal

Hayman’s component analysis was employed to estimate genetic components of variation for yield and yield related traits in boro rice. Nine diverse lines of boro rice were crossed in diallel mating design excluding reciprocals and all the parental lines along with their 36 crosses were evaluated in randomized block design over 3 seasons in 3 replication. Significant differences among genotypes were observed for all the traits over seasons. Component analysis indicated importance of both additive and dominance components. However, greater magnitude of dominance component than its corresponding additive component of variance exhibited greater role of dominance in the inheritance of these traits. The average degree of dominance was more than unity indicating overdominance for all the traits. Most of the traits exhibited low to moderate narrow sense heritability.Bangladesh J. Agril. Res. 42(3): 457-466, September 2017


2021 ◽  
Vol 22 (1) ◽  
pp. 8
Author(s):  
Marida Santi Yudha Ika Bayu ◽  
Yusmani Prayogo ◽  
Gatut Wahyu Anggoro Susanto

The main constraints to increase mungbean production in Indonesia are pests and diseases. The application of integrated biological agents can improve the efficacy of controlling the mungbean pests and diseases. The study aimed to determine the efficacy of integrated biological agents to suppress mungbean pests and diseases. This field research was conducted from May to July 2018 using a randomized block design with seven treatments and four replicates. The treatments were: T1 = Trichol + NSP, T2 = Trichol + SlNPV, T3 = Trichol + NSP + SlNPV, T4 = Trichol + NSP + SlNPV + BeBas, T5 = Trichol + NSP + SlNPV + BeBas + GE, T6 = chemical pesticides, and T7 = control. The results showed that the highest efficacy occurred in T4 and T5 treatments which saved the yield loss from major pests and diseases attack, and did not differ significantly with chemical pesticides (T6). Treatments T4 was able to reduce the development of soil borne diseases by 3% and suppress Spodoptera litura attack by 9.8% as compared to chemical treatment. T4 was also more efficient than T5 because it uses less biological agents. The advantage of biological agents is compatible if they were used together with predators such as Oxyopes sp., Paederus sp. and Coccinella sp; and also Telenomus sp. and Trichogramma sp. parasitoids. On the other hand, the chemical pesticides (T6) killed all existing natural enemies. Therefore, T4 could be recommended for controlling mungbean pests and diseases.


Sign in / Sign up

Export Citation Format

Share Document