scholarly journals Analisis Pengendalian Puncak Banjir Menggunakan Kolam Retensi di DAS Batang Air Dingin Kota Padang

2020 ◽  
Vol 16 (1) ◽  
pp. 1
Author(s):  
Fajri Ramadhan ◽  
Yola Amelia ◽  
Revalin Herdianto ◽  
Elvi Roza Syofyan

Batang Air Dingin Watershed is one of the watersheds in Padang City which is located at 00050’12,5” to 00050’22,5” South Latitude and 100023’35,85” to 100022’42,84” East Longitude has changed its function. Land in the area around the river flow results in greater surface runoff, which has the potential to cause erosion. Runoff that occurs in Batang Air Dingin Watershed area causes the river to shrink during the dry season causing the local residents’ wells to be drought, while in the rainy season the river discharge value used is obtained. Through the calculation of the hydrograps discharge using the HSS Nakayasu and HEC-HMS methods whose values are validated by the field flood discharge. Hydraulic modelling using HEC-RAS software with discharge from HSS Nakayasu method. The retention pond plan is based on the amount of runoff that cannot be accommodated by the original storage capacity of Batang Air Dingin Watershed during 100 year return period was 1212, 94 m3/second with large river storage capacity is 1205,317 m3/second. The debit that can be deducted by making a retention pond is 30,5%.

2018 ◽  
Vol 6 (2) ◽  
pp. 88-98
Author(s):  
Redaksi Tim Jurnal

River flow discharge is one of the most important hydrological parameters for the management of water resources because river flow data is required for future pusposes assuming the process characteristics are unchanged. Komering River is one of the largest rivers in the Province South Sumatra which is quite a big role in the lives of people who are in the sub Komering watershed. The magnitude of the flood discharge and dependable flow Komering River is very important to to be taken into account, by analyzing the flood discharge can be done flood management, while by analyzing the dependable flow can be done planning river water utilization. The research based on the collection of secondary data obtained from Departemen Pekerjaan Umum Sumatera Selatan and Balai Besar Wilayah Sungai Sumatera VIII, discharge data from 2000 to 2010 and maps needed to know the study area. All the data are correlated where the analysis is intended to determine the statistics of flood discharge and dependable flow Komering River. From the results of analyzes obtained that the distribution can be used to predict flooding in the river discharge is Gumbel distribution with estimate the flood discharge for 2 years return period 1007.57 m³/dt, for 5 years return period 1459.79 m³/dt, for 10 years return period 1759.20 m³/dt, for 25 years return peiod 2137.50 m³/dt, for 50 years return period 2418.15 m³/dt, and for 100 years return period 2696.73 m³/dt. Based on analysis of dependable flow, Month Basic Plan Method, thatLog Pearson III distribution can be used to analyze River Komering dependable flow. The highest dependable flow of is 226.20 m³/dt and the lowest dependable flow is 62.08 m³/dt.


2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Yudha Hanova

<p><em>Flood disaster at the region Medan Industrial Estate resulted the losses in infrastructure, farming, and residence. </em><em></em></p><p><em>Flood discharge at Medan Industrial Estate are influenced by surface runoff from several catchment area in Medan Industrial Estate. Analysis of potential for surface runoff is expected to provide input and information to find alternative solutions appropriate flood mitigation.</em> <em>Discharge of surface runoff were analyzed using SCS method with the return period of 1, 2 and 5 Years. Rainfall data are obtained BMKG Stations of Maritim Belawan</em>. <em>Effective rainfall calculated using SCS-CN method on condition AMC III (wet conditions). The results of the analysis of the potential for surface runoff maximum for 1 year return period on DAS I, II, III, IV, V, and VI was 17.631 m<sup>3</sup>/s</em><em>, 22.183 m<sup>3</sup>/s, 12.621 m<sup>3</sup>/s, 11.338 m<sup>3</sup>/s, 18.224 m<sup>3</sup>/st, dan 15.839 m<sup>3</sup>/s.</em> <em>To return period of 2 years was 31.234 m<sup>3</sup>/sec,</em> <em>39.235 m<sup>3</sup>/s, 22.351 m<sup>3</sup>/det, 20.044 m<sup>3</sup>/det, 32.300 m<sup>3</sup>/det, dan 28.097 m<sup>3</sup>/det. F</em><em>or the return period of 5 years is 45.346 m<sup>3</sup>/s,</em> <em>56.926 m<sup>3</sup>/s, 32.446 m<sup>3</sup>/s, 29.076 m<sup>3</sup>/s, 46.903 m<sup>3</sup>/s, dan 40.816 m<sup>3</sup>/s.</em></p>


2021 ◽  
Vol 5 (3) ◽  
pp. 125-136
Author(s):  
Moch Ridwan Widiansyah ◽  
Budi Indra Setiawan

The problem of flooding in the city of Tangerang is a problem that requires further treatment. Improper management of water resources is one of the factors that cause flooding which results in losses for the community.The activity carried out as an effort to prevent floods is the creation of water retention. The purpose of this research is to know the flood discharge in Kali Sabi, know volume that must be accommodate, determine the capacity for water retention, produce an effective technical water retention design, and obtain an estimated cost of making the water retention. This research was conducted in April-July 2020 in Uwung Jaya Village, Tangerang City using topographic and rainfall data for 12 years. Rain distribution using the Log Pearson III . The results of the analysis revealed that the effective rainfall of the 5-year return period was 66.314 mm with a maximum flood discharge of 83.69 m³. Volume runoff that had to be overcome was 1084.64 m³. The effective storage capacity of the water retention is ± 1975 m³ with an area of ± 525 m², with construction materials, reinforced concrete with K-225 quality and 10 mm diameter reinforcement. Water retention has two steel sliding gates at the inlet and outlet. Construction of the water retention is estimated to cost Rp. 813,839,000.00.


2020 ◽  
Vol 3 (2) ◽  
pp. 259-268
Author(s):  
Nofrizal Nofrizal ◽  
Febi Silfia

Flooding ia caused by the increased volume of water’s volume in the river or lake so that water is out of its natural limits. The flooding is mostly caused by inadequate river capacity to accommodate river discharge. The amount of river discharge at the time of flood is caused by the increasing amount of surface runoff from the rains that fall in the catchment area. Based on the preliminary survey conducted, it was found that the frequency of flooding in the Batang Lumpo river area is 2-3 times a year with a height ranging from 0.5 to 1.5 meters from the soil surface with the duration of inundation ranges from 4 to 6 hours. Areas affected by flooding ranging from the area of Nagari Taratak Tengah Lumpo Kecamatan IV Jurai down to the downstream river at Nagari Pasar Baru Kecamatan Bayang. By the result of the analysis obtained flood discharge using Rational method Q 100 years = 237, 26 m³ / dt, high h = 2.7 m, the high value of W = 1.16 m length Sheet Pile in flood condition = 4.14 m, Maximum Moment Mmax = 6, 31 tm and sheet pile length in dry condition = 3.16 m, Mmax Moment = 7,125 t.m.


Author(s):  
Matheus Souisa ◽  
Paulus R. Atihuta ◽  
Josephus R. Kelibulin

Ambon City is a region consisting of hilly areas and steep slopes with diverse river characteristics. Research has been carried out in the Wae Ruhu watershed in Ambon City which starts from upstream (water catchment) to downstream. This study aims to determine the magnitude of river discharge and sediment discharge in the Wae Ruhu watershed. This research was conducted in several stages including, secondary data collection, research location survey, preparation of research tools and materials as well as field data retrieval processes which included tracking coordinates at each station point and entire watershed, calculation of river flow velocity, river geometry measurements, and sampling sediment. The results showed that the average river discharge in the Wae watershed in the year 2018 was 1.24 m3 / s, and the average sediment discharge was 6.27 kg / s. From the results of this study and the field observations proposed for flood prevention and the rate of sediment movement are the construction of cliffs with sheet pile and gabions.


2020 ◽  
Vol 12 (24) ◽  
pp. 10677
Author(s):  
Ronghui Ye ◽  
Jun Kong ◽  
Chengji Shen ◽  
Jinming Zhang ◽  
Weisheng Zhang

Accurate salinity prediction can support the decision-making of water resources management to mitigate the threat of insufficient freshwater supply in densely populated estuaries. Statistical methods are low-cost and less time-consuming compared with numerical models and physical models for predicting estuarine salinity variations. This study proposes an alternative statistical model that can more accurately predict the salinity series in estuaries. The model incorporates an autoregressive model to characterize the memory effect of salinity and includes the changes in salinity driven by river discharge and tides. Furthermore, the Gamma distribution function was introduced to correct the hysteresis effects of river discharge, tides and salinity. Based on fixed corrections of long-term effects, dynamic corrections of short-term effects were added to weaken the hysteresis effects. Real-world model application to the Pearl River Estuary obtained satisfactory agreement between predicted and measured salinity peaks, indicating the accuracy of salinity forecasting. Cross-validation and weekly salinity prediction under small, medium and large river discharges were also conducted to further test the reliability of the model. The statistical model provides a good reference for predicting salinity variations in estuaries.


2019 ◽  
Vol 266 ◽  
pp. 02002
Author(s):  
Nur Khaliesah Abdul Malik ◽  
Nor Rohaizah Jamil ◽  
Latifah Abd Manaf ◽  
Mohd Hafiz Rosli ◽  
Zulfa Hanan Ash’aari ◽  
...  

The accumulation of floatable litter in the river is mainly influenced by the increasing number of human population, rapid urbanization and development which indirectly lead to the changes of hydrological processes in river discharge, decreasing the water quality and aesthetical value of the river. The main objective of this paper is to determine the cumulative floatable litter load captured at the log boom during the extreme events by using the Gumbel distribution method for frequency analysis in river discharge of Sungai Batu. The annual maximum river discharge for a period of 35 years (1982 to 2016) was used in Gumbel distribution method to obtain the discharge for different return period (2, 5, 10, 25, 50, 100, and 200). The result shows that the estimated discharge (103.17 m³/s) can estimate the cumulative floatable litter load (53267.27 kg/day) at 50 years return period. The R2 value obtained from non – linear regression analysis is 0.9986 indicate that Gumbel distribution is suitable to predict the expected discharge of the river. This study is very crucial for the related agencies in highlighting this environmental issues for their future references which can be used as a guidelines during the decision making process in making better improvement.


2012 ◽  
Vol 29 (4) ◽  
pp. 613-628 ◽  
Author(s):  
Steven L. Morey ◽  
Dmitry S. Dukhovskoy

Abstract Statistical analysis methods are developed to quantify the impacts of multiple forcing variables on the hydrographic variability within an estuary instrumented with an enduring observational system. The methods are applied to characterize the salinity variability within Apalachicola Bay, a shallow multiple-inlet estuary along the northeastern Gulf of Mexico coast. The 13-yr multivariate time series collected by the National Estuary Research Reserve at three locations within the bay are analyzed to determine how the estuary responds to variations in external forcing mechanisms, such as freshwater discharge, precipitation, tides, and local winds at multiple time scales. The analysis methods are used to characterize the estuarine variability under differing flow regimes of the Apalachicola River, a managed waterway, with particular focus on extreme events and scales of variability that are critical to local ecosystems. Multivariate statistical models are applied that describe the salinity response to winds from multiple directions, river flow, and precipitation at daily, weekly, and monthly time scales to understand the response of the estuary under different climate regimes. Results show that the salinity is particularly sensitive to river discharge and wind magnitude and direction, with local precipitation being largely unimportant. Applying statistical analyses with conditional sampling quantifies how the likelihoods of high-salinity and long-duration high-salinity events, conditions of critical importance to estuarine organisms, change given the state of the river flow. Intraday salinity range is shown to be negatively correlated with the salinity, and correlated with river discharge rate.


2016 ◽  
Vol 20 (3) ◽  
pp. 1177-1195 ◽  
Author(s):  
Huayang Cai ◽  
Hubert H. G. Savenije ◽  
Chenjuan Jiang ◽  
Lili Zhao ◽  
Qingshu Yang

Abstract. The mean water level in estuaries rises in the landward direction due to a combination of the density gradient, the tidal asymmetry, and the backwater effect. This phenomenon is more prominent under an increase of the fresh water discharge, which strongly intensifies both the tidal asymmetry and the backwater effect. However, the interactions between tide and river flow and their individual contributions to the rise of the mean water level along the estuary are not yet completely understood. In this study, we adopt an analytical approach to describe the tidal wave propagation under the influence of substantial fresh water discharge, where the analytical solutions are obtained by solving a set of four implicit equations for the tidal damping, the velocity amplitude, the wave celerity, and the phase lag. The analytical model is used to quantify the contributions made by tide, river, and tide–river interaction to the water level slope along the estuary, which sheds new light on the generation of backwater due to tide–river interaction. Subsequently, the method is applied to the Yangtze estuary under a wide range of river discharge conditions where the influence of both tidal amplitude and fresh water discharge on the longitudinal variation of the mean tidal water level is explored. Analytical model results show that in the tide-dominated region the mean water level is mainly controlled by the tide–river interaction, while it is primarily determined by the river flow in the river-dominated region, which is in agreement with previous studies. Interestingly, we demonstrate that the effect of the tide alone is most important in the transitional zone, where the ratio of velocity amplitude to river flow velocity approaches unity. This has to do with the fact that the contribution of tidal flow, river flow, and tide–river interaction to the residual water level slope are all proportional to the square of the velocity scale. Finally, we show that, in combination with extreme-value theory (e.g. generalized extreme-value theory), the method may be used to obtain a first-order estimation of the frequency of extreme water levels relevant for water management and flood control. By presenting these analytical relations, we provide direct insight into the interaction between tide and river flow, which will be useful for the study of other estuaries that experience substantial river discharge in a tidal region.


2018 ◽  
Vol 7 (1) ◽  
pp. 26-29
Author(s):  
Asril Zevri

Abstract: Belawan River Basin is one of the watershed, which currently change the land use because of the increasing population and industrial development. Rainfall with high intensity can cause rapid runoff, causing flood around the plains of the river cross section. The purpose of this research is to determine the flood water level of Belawan Watershed and flood discharge return period. Scope of activity in this research is analyzing daily rainfall Belawan watershed with the flood-discharge return period. Scope of activity in this research is analyzing maximum daily rainfall Belawan Watershed, and simulating flood water level with HECRAS. The result of the study shows that the potency of Belawan watershed flood water level is caused by flood discharge at 25 to 100 years especially in the middle to downstream of river cross section that is between 0.7 m and 3.3 m. Keywords: Flood Discharge, Flood Level, Belawan Watershed, Software HECRAS. Abstrak: Daerah Aliran Sungai Belawan adalah salah satu DAS yang pada saat ini mengalami perubahan tata guna lahan seiring bertambahnya jumlah penduduk dan perkembangan industri. Curah hujan yang tinggi dapat mengakibatkan limpasan sehingga menimbulkan tinggi muka air banjir di sekitar dataran penampang sungai. Tujuan dari penelitian ini adalah untuk mensimulasi tinggi muka air banjir DAS Belawan dengan debit banjir periode kala ulangnya. Lingkup kegiatan dalam penelitian ini yaitu menganalisa curah hujan harian maksimum rata-rata DAS Belawan dan menganalisa debit banjir kala ulang 2 sampai dengan 100 tahun, mensimulasi tinggi muka air banjir dengan HECRAS. Hasil studi menunjukan potensi tinggi muka air banjir DAS Belawan terjadi akibat debit banjir periode kala ulang 25 sampai dengan 100 tahun khususnya  di bagian tengah sampai hilir penampang sungai yaitu berkisar antara 0.7 m sampai dengan 3.3 m. Kata kunci: Debit banjir, Tinggi Banjir, DAS Belawan, Software HECRAS.


Sign in / Sign up

Export Citation Format

Share Document