Mapping Complex Injectite Bodies With Multiwell Electromagnetic 3D Inversion Data

Author(s):  
Nigel Clegg ◽  
◽  
Endre Eriksen ◽  
Kevin Best ◽  
Ingeborg Tøllefsen ◽  
...  

Electromagnetic (EM) inversion processing of ultradeep resistivity data has advanced from one dimensional (1D) to three dimensional (3D). These advances have helped improve the geological complexity that can be imaged and provide additional reservoir information. The large depth of investigation (DOI) of ultradeep LWD EM tools means that distant boundaries might not be detected by any other sensor in the tool string, making it difficult to verify the results. As inversion results represent a model of the subsurface resistivity distribution and not a direct measurement, it is important to have high confidence in the results. Directly comparing the component data measured by the tool to the modeled component data from the inversion across multiple frequencies provides confidence in the resultant model where the data have a close fit. However, as measurement sensitivities decrease with distance, there is potential for non-uniqueness, generating a model that is geologically unrealistic. Increased confidence can be achieved with independent verification of the model. This paper details results from a trilateral well in an injectite reservoir wherein the sand distribution was expected to be complex. The 1D inversions showed the vertical distribution of the sand, but the results were sometimes distorted by lateral resistivity variations. The 3D inversion of the data allowed the lateral resistivity variations to be resolved. These results can be corroborated by direct comparison with azimuthal resistivity images. Additionally, the laterals all diverged from the same main bore and remained close together initially in an area containing major sand injectites. The 3D inversions from two of the wells overlap and define similarly shaped structures, providing confidence in the 3D inversion model. In complex geobodies, such as the injectites described, significant lateral variation in the reservoir distribution is expected, which is not captured by 1D inversion. Understanding the shape of these structures and their potential connectivity using 3D inversion provides a major increase in reservoir understanding that is critical to completion design.

2003 ◽  
Vol 42 (Part 1, No. 5B) ◽  
pp. 3054-3055 ◽  
Author(s):  
Yoshiaki Tokunaga ◽  
Toshinori Okayama ◽  
Shohei Kanno ◽  
Kyoko Kato ◽  
Keimei Tamura

2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
Martin J.-D. Otis

This paper presents the electromechanical characterization of Nafion-Pt microlegs for the development of an insect-like hexapod BioMicroRobot (BMR). BMR microlegs are built using quasi-cylindrical Nafion-Pt ionomeric polymer-metal composite (IPMC), which has 2.5 degrees of freedom. The specific manufacturing process using a laser excimer for one leg in three-dimensional configurations is discussed. Dynamic behavior and microleg characteristics have been measured in deionized water using a laser vibrometer. The use of the laser vibrometer shows the linear characteristics between the duty cycle of square wave input and displacement rate of the actuator at multiple frequencies. This linearity is used to design a servo-system in order to reproduce insect tripod walking. As well, BMR current consumption is an important parameter evaluated for each leg. Current passing throughout the IPMC membrane can result in water electrolysis. Four methods are explained for avoiding electrolysis. The hardware test bench for measurements is presented. The purpose of this design is to control a BMR for biomedical goals such as implantation into a human body. Experimental results for the proposed propulsion system are conclusive for this type of bioinspired BMR.


VLSI Design ◽  
2001 ◽  
Vol 13 (1-4) ◽  
pp. 425-429 ◽  
Author(s):  
E. Amirante ◽  
G. Iannaccone ◽  
B. Pellegrini

We have performed a three-dimensional statistical simulation of the threshold voltage distribution of deep submicron nMOSFETs, as a function of gate length, doping density, oxide thickness, based on a multigrid non-linear Poisson solver. We compare our results with statistical simulations presented in the literature, and show that essentially only the vertical distribution of dopants has an effect on the standard deviation of the threshold voltage.


Geophysics ◽  
2010 ◽  
Vol 75 (1) ◽  
pp. L1-L11 ◽  
Author(s):  
Yaoguo Li ◽  
Sarah E. Shearer ◽  
Matthew M. Haney ◽  
Neal Dannemiller

Three-dimensional (3D) inversion of magnetic data to recover a distribution of magnetic susceptibility has been successfully used for mineral exploration during the last decade. However, the unknown direction of magnetization has limited the use of this technique when significant remanence is present. We have developed a comprehensive methodology for solving this problem by examining two classes of approaches and have formulated a suite of methods of practical utility. The first class focuses on estimating total magnetization direction and then incorporating the resultant direction into an inversion algorithm that assumes a known direction. The second class focuses on direct inversion of the amplitude of the magnetic anomaly vector. Amplitude data depend weakly upon magnetization direction and are amenable to direct inversion for the magnitude of magnetization vector in 3D subsurface. Two sets of high-resolution aeromagnetic data acquired for diamond exploration in the Canadian Arctic are used to illustrate the methods’ usefulness.


2005 ◽  
Vol 5 (1) ◽  
pp. 153-167 ◽  
Author(s):  
M. Schneider ◽  
T. Blumenstock ◽  
M. P. Chipperfield ◽  
F. Hase ◽  
W. Kouker ◽  
...  

Abstract. Within the framework of the NDSC (Network for the Detection of Stratospheric Change) ground-based FTIR solar absorption spectra have been routinely recorded at Izaña Observatory (28° N, 16° W) on Tenerife Island since March 1999. By analyzing the shape of the absorption lines, and their different temperature sensitivities, the vertical distribution of the absorbers can be retrieved. Unique time series of subtropical profiles of O3, HCl, HF, N2O, and CH4 are presented. The effects of both dynamical and chemical annually varying trace gas cycles can be seen in the retrieved profiles. These include enhanced upwelling and photochemistry in summer and a more disturbed atmosphere in winter, which are typical of the subtropical stratosphere. A detailed error analysis has been performed for each profile. The output from two different three-dimensional (3-D) chemical transport models (CTMs), which are forced by ECMWF analyses, are compared to the measured profiles. Both models agree well with the measurements in tracking abrupt variations in the atmospheric structure, e.g. due to tropical streamers, in particular for the lower stratosphere. Simulated and measured profiles also reflect similar dynamical and chemical annual cycles. However, the differences between their mixing ratios clearly exceed the error bars estimated for the measured profiles. Possible reasons for this are discussed.


2013 ◽  
Vol 838-841 ◽  
pp. 1641-1650 ◽  
Author(s):  
Bo Xu ◽  
Mo Wen Xie ◽  
Li Wei Wang

Due to the geological complexity of the wide reservoir area, reservoir leakage problem has been the subject of Research in Water Resources and Hydropower Engineering. In recent years, the development and application of GIS (Geographic Information System), remote sensing technology and three-dimensional (3D) technology, have provided a powerful tool in analysis of the reservoir leakage problem. Based on the 3D remote sensing image visualization system created with remote sensing technology, GIS, 3D technology, this paper studies the leakage problem of a reservoir. By analyzing the terrain data, we can find the might existing leaking channels combining, combining lithology, geological structure and hydrogeological conditions. Then calculate the leakage quantity to evaluate the reservoir leakage. With the characteristic of accuracy and timeliness, the system will play an important role in preliminary analysis of reservoir leakage problemas well as forecasting decision making.


Geophysics ◽  
2011 ◽  
Vol 76 (1) ◽  
pp. F77-F87 ◽  
Author(s):  
Michael S. Zhdanov ◽  
Le Wan ◽  
Alexander Gribenko ◽  
Martin Čuma ◽  
Kerry Key ◽  
...  

Three-dimensional magnetotelluric (MT) inversion is an emerging technique for offshore hydrocarbon exploration. We have developed a new approach to the 3D inversion of MT data, based on the integral equation method. The Tikhonov regularization and physical constraint have been used to obtain a stable and reasonable solution of the inverse problem. The method is implemented in a fully parallel computer code. We have applied the developed method and software for the inversion of marine MT data collected by the Scripps Institution of Oceanography (SIO) in the Gemini prospect, Gulf of Mexico. The inversion domain was discretized into 1.6 million cells. It took nine hours to complete 51 iterations on the 832-processor cluster with a final misfit between the observed and predicted data of 6.2%. The inversion results reveal a resistive salt structure, which is confirmed by a comparison with the seismic data. These inversion results demonstrate that resistive geoelectrical structures like salt domes can be mapped with reasonable accuracy using the 3D inversion of marine MT data.


1981 ◽  
Vol 25 (02) ◽  
pp. 117-129
Author(s):  
C. H. Kim ◽  
J. F. Dalzell

Results of calculations are given for lateral drifting forces acting on a cylinder and a Series 60 hull derived by a new procedure involving application of the quadratic frequency response function (QFRF) and the close-fit method for flows induced by hull sections in the near field. The near-field solutions are required by the QFRF in order to obtain the nonlinear (second order) interaction effects in the presence of dual waves. This method yields the mean drifting force consisting of four components of which the relative wave-elevation term is dominant, whereas the Bernoulli quadratic term is secondary. A mathematical discontinuity of the drifting force in the neighborhood of a high frequency is investigated by applying a modified Green's function. Mean drifting forces for two forms have been calculated and the results compared with available analysis and model data. A fairly complete quadratic frequency response function for lateral drifting forces in the bifrequency domain was computed for the Series 60, CB = 0.6 ship at 60-deg heading. The computed results are presented in a three-dimensional view accompanied by a detailed discussion of the characteristic behavior.


Geophysics ◽  
2009 ◽  
Vol 74 (4) ◽  
pp. L31-L42 ◽  
Author(s):  
Emilia Fregoso ◽  
Luis A. Gallardo

We extend the cross-gradient methodology for joint inversion to three-dimensional environments and introduce a solution procedure based on a statistical formulation and equality constraints for structural similarity resemblance. We apply the proposed solution to the joint 3D inversion of gravity and magnetic data and gauge the advantages of this new formulation on test and field-data experiments. Combining singular-value decomposition (SVD) and other conventional regularizing constraints, we determine 3D distributions of the density and magnetization with enhanced structural similarity. The algorithm reduces some misleading features of the models, which are introduced commonly by conventional separate inversions of gravity and magnetic data, and facilitates an integrated interpretation of the models.


2014 ◽  
Vol 142 (11) ◽  
pp. 4053-4073 ◽  
Author(s):  
Juhui Ma ◽  
Yuejian Zhu ◽  
Dingchen Hou ◽  
Xiaqiong Zhou ◽  
Malaquias Peña

Abstract The ensemble transform with rescaling (ETR) method has been used to produce fast-growing components of analysis error in the NCEP Global Ensemble Forecast System (GEFS). The rescaling mask contained in the ETR method constrains the amplitude of perturbations to reflect regional variations of analysis error. However, because of a lack of suitable three-dimensional (3D) analysis error estimation, in the operational GEFS the mask is based on the estimated analysis error at 500 hPa and is not flow dependent but changes monthly. With the availability of an ensemble-based data assimilation system at NCEP, a 3D mask can be computed. This study generates initial perturbations by the ensemble transform with 3D rescaling (ET_3DR) and compares the performance with the ETR. Meanwhile, the ET_3DR is also applied within the ensemble Kalman filter (EnKF) method (hereafter EnKF_3DR). Results from a set of experiments indicate that the 3D mask suppresses perturbations less in unstable regions. Relative to the ETR, the large amplitudes of the ET_3DR initial perturbations at 500 hPa better reflect areas of baroclinic instability over the extratropics and deep convection over the tropics. Furthermore, the maxima of the vertical distribution for the ET_3DR initial perturbations correspond to the heights of the subtropical westerly and tropical easterly jet regions. Such perturbations produce faster spread growths. Results with EnKF_3DR also show benefits from an orthonormalization by the ensemble transform algorithm and amplitude constraint by the 3D mask rescaling. Thus, the EnKF_3DR forecasts outperform the EnKF.


Sign in / Sign up

Export Citation Format

Share Document