INDOOR/OUTDOOR CORRELATIONS REGARDING INDOOR AIR POLLUTION WITH PARTICULATE MATTER

2019 ◽  
Vol 18 (2) ◽  
pp. 425-432
Author(s):  
Elena Bucur ◽  
Andrei Danet
2019 ◽  
Vol 5 (1) ◽  
pp. 00052-2018 ◽  
Author(s):  
Aneesa Vanker ◽  
Polite M. Nduru ◽  
Whitney Barnett ◽  
Felix S. Dube ◽  
Peter D. Sly ◽  
...  

Indoor air pollution (IAP) or environmental tobacco smoke (ETS) exposure may influence nasopharyngeal carriage of bacterial species and development of lower respiratory tract infection (LRTI). The aim of this study was to longitudinally investigate the impact of antenatal or postnatal IAP/ETS exposure on nasopharyngeal bacteria in mothers and infants.A South African cohort study followed mother–infant pairs from birth through the first year. Nasopharyngeal swabs were taken at birth, 6 and 12 months for bacterial culture. Multivariable and multivariate Poisson regression investigated associations between nasopharyngeal bacterial species and IAP/ETS. IAP exposures (particulate matter, carbon monoxide, nitrogen dioxide, volatile organic compounds) were measured at home visits. ETS exposure was measured through maternal and infant urine cotinine. Infants received the 13-valent pneumococcal andHaemophilus influenzaeB conjugate vaccines.There were 881 maternal and 2605 infant nasopharyngeal swabs. Antenatal ETS exposure was associated withStreptococcus pneumoniaecarriage in mothers (adjusted risk ratio (aRR) 1.73 (95% CI 1.03–2.92)) while postnatal ETS exposure was associated with carriage in infants (aRR 1.14 (95% CI 1.00–1.30)) Postnatal particulate matter exposure was associated with the nasopharyngeal carriage ofH. influenzae(aRR 1.68 (95% CI 1.10– 2.57)) orMoraxella catarrhalis(aRR 1.42 (95% CI 1.03–1.97)) in infants.Early-life environmental exposures are associated with an increased prevalence of specific nasopharyngeal bacteria during infancy, which may predispose to LRTI.


Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1326
Author(s):  
Rohit Chakraborty ◽  
James Heydon ◽  
Martin Mayfield ◽  
Lyudmila Mihaylova

This study concerns the levels of particulate matter (PM2.5 and PM1) released by residential stoves inside the home during ‘real world’ use. Focusing on stoves that were certified by the UK’s Department of Environment, Food, and Rural Affairs (DEFRA), PM sensors were placed in the vicinity of 20 different stoves over four weeks, recording 260 uses. The participants completed a research diary in order to provide information on time lit, amount and type of fuel used, and duration of use, among other details. Multivariate statistical tools were used in order to analyse indoor PM concentrations, averages, intensities, and their relationship to aspects of stove management. The study has four core findings. First, the daily average indoor PM concentrations when a stove was used were higher for PM2.5 by 196.23% and PM1 by 227.80% than those of the non-use control group. Second, hourly peak averages are higher for PM2.5 by 123.91% and for PM1 by 133.09% than daily averages, showing that PM is ‘flooding’ into indoor areas through normal use. Third, the peaks that are derived from these ’flooding’ incidents are associated with the number of fuel pieces used and length of the burn period. This points to the opening of the stove door as a primary mechanism for introducing PM into the home. Finally, it demonstrates that the indoor air pollution being witnessed is not originating from outside the home. Taken together, the study demonstrates that people inside homes with a residential stove are at risk of exposure to high intensities of PM2.5 and PM1 within a short period of time through normal use. It is recommended that this risk be reflected in the testing and regulation of residential stoves.


2019 ◽  
Vol 3 ◽  
pp. 133
Author(s):  
Prafulla Shriyan ◽  
Giridhara R Babu ◽  
Deepa Ravi ◽  
Yamuna Ana ◽  
Onno CP van Schayck ◽  
...  

Background: Exposure to air pollution (IAP) from the combustion of solid fuels is a significant cause of morbidity and mortality in developing countries. Pregnant women exposed to higher pollutant levels are at higher risk of delivering a low-birth-weight (LBW) baby. There is a lack of standardized data regarding the levels and types of specific pollutants and how they impact LBW. We aim to prospectively assess the association between ambient and indoor air pollution levels in pregnancy and low birth weight and understand the subsequent risk of adiposity in these infants. Methods: We will conduct a prospective cohort study of 516 pregnant women recruited before 18 weeks of gestation in the urban slums of Bangalore, who have voluntarily consented to participate. We will estimate the level of air pollutants including coarse particulate matter 10 ug/m3 (PM10 ), fine particulate matter 2.5 ug/m3(PM2.5) and carbon monoxide (CO) parts per million (ppm) levels in both indoor and ambient environment. The follow-up of the delivered children will be done at delivery until the infant is two years old. The association between pollutants and LBW will be evaluated using logistic regression adjusting for potential confounders.Further, we will explore the mediation role of LBW in the hypothesized causal chain of air pollution and adiposity. Nested within a larger Maternal Antecedents of Adiposity and Studying the Transgenerational role of Hyperglycemia and Insulin (MAASTHI) cohort, we can estimate the absolute risk of having low birth weight caused by air pollution and other variables. Discussion: Understanding the association between exposures to ambient and indoor air pollution and low birth weight is essential in India. LBW babies have a higher risk of developing obesity and Non-Communicable Diseases (NCDs) during adulthood. The results from this study can inform the efforts for controlling the air pollution-related chronic diseases in India.


2020 ◽  
Author(s):  
Anu Dahal ◽  
Indira Parajuli

Abstract Indoor Air Pollution (IAP) from smoky cooking fires causes deaths over 22,800 per year being the fourth leading cause of death in Nepal. The study aims to compare the pollution level particularly Carbon Monoxide (CO) and Particulate Matter (PM 2.5 ) in different firewood species. Two households one with ICS and TCS is selected purposively to monitor the concentration of pollutants in Ward no. 3 of Gatlang, Rasuwa, Nepal. IAP Meter based on Laser Sensor principle is used to monitor real time concentration of PM 2.5 and CO. 24 hours mean concentration of PM 2.5 and 8 hours mean average concentrations of CO are found to be above the WHO and National Indoor Air Quality Guidelines i.e. For ICS using household the concentration is found to be 155.26 µg/m 3 and 9 ppm respectively and household using TCS is found to be 385.12 µg/m 3 and 12.2 ppm). Both pollutants’ concentration is found less in Abies Spectabilis than other species. Positive correlation is found in both households along with moisture content, amount of firewood used, etc. This result suggests the use of Abies Spectabilis as it emits less emission as compared to other species as it has less moisture content that reduces the concentration of air pollution. Keywords : Carbon Monoxide 1 , Particulate Matter (PM 2.5 ) 2 , Indoor Air Pollution 3


Author(s):  
Vittoria Cammalleri ◽  
Daniela Marotta ◽  
Carmela Protano ◽  
Matteo Vitali ◽  
Paolo Villari ◽  
...  

Particulate Matter (PM) is a well-known health risk factor and pollutes both outdoor and indoor air. Using PM as an air pollution indicator, the aims were to assess outdoor and indoor air pollution due to combustion and/or non-combustion products used outdoors and to compare the PM levels emitted by different products. PM with an aerodynamic diameter ≤10, 4, 2.5 and 1 µm (PM10, PM4, PM2.5, PM1) was simultaneously measured in two areas, respectively, indoors (with smoking ban) and outdoors (where people commonly smoke) of a university library during the morning and the afternoon of two weekdays. Both combustion and non-combustion products determined a relevant worsening of outdoor air quality, with the highest PM1 levels achieved when a single traditional cigarette (9920 µg m−3), a single e-cigarette (9810 µg m−3) and three simultaneous traditional cigarettes (8700 µg m−3) were smoked. An increase of indoor PM1 levels was found during outdoor smoking/vaping sessions, persisting also after the end of sessions. The results highlighted the need for a revision of smoke-free laws, especially for outdoor areas, to include non-combustion products. In addition, it is essential to make society aware of the dangers of smoking outdoors by implementing health promotion interventions.


2020 ◽  
Vol 29 (1) ◽  
Author(s):  
Ronald Williams ◽  
Jeremy Barnes ◽  
Michael Hall ◽  
Timothy Day ◽  
Barry Hunt

This study examined the indoor air quality of restaurants in two cities with universities, one smoke-free (n=15) and one that allowed smoking (n=17). Results indicated that restaurants protected by smoke-free ordinance had significantly (p=.036) lower levels of particulate matter (13.10±10.33 ug/m3) compared to restaurants which allowed smoking (130.72±212.64 ug/m3). Mean particulate matter within smoking-allowed restaurants was caused by as few as three cigarettes being smoked at one time. Based on the EPA Air Quality Index, 70.6% of smoking-allowed restaurants yielded an unhealthy classification compared to only 6.7% of smoke-free restaurants (p=.005). Smoke-free ordinances provide effective protection from indoor air pollution.


2021 ◽  
Author(s):  
Sotiris Vardoulakis ◽  
Evanthia Giagloglou ◽  
Susanne Steinle ◽  
Alice Davis ◽  
Anne Sleeuwenhoek ◽  
...  

Background: There is increasing awareness that the quality of the indoor environment affects our health and well-being. Indoor air quality (IAQ) in particular has an impact on multiple health outcomes, including respiratory and cardiovascular illness, allergic symptoms, cancers, and premature mortality. (2) Methods: We carried out a global systematic literature review on indoor exposure to selected air pollutants associated with adverse health effects, and related household characteristics, seasonal influences and occupancy patterns. We screened records from six bibliographic databases: ABI/INFORM, Environment Abstracts, Pollution Abstracts, PubMed, ProQuest Biological and Health Professional, and Scopus. (3) Results: Information on indoor exposure levels and determinants, emission sources, and associated health effects was extracted from 141 studies from 29 countries. The most-studied pollutants were particulate matter (PM2.5 and PM10); nitrogen dioxide (NO2); volatile organic compounds (VOCs) including benzene, toluene, xylenes and formaldehyde; and polycyclic aromatic hydrocarbons (PAHs) including naphthalene. Identified indoor PM2.5 sources include smoking, cooking, heating, use of incense, candles, and insecticides, while cleaning, housework, presence of pets and movement of people were the main sources of coarse particles. Outdoor air is a major PM2.5 source in rooms with natural ventilation in roadside households. Major sources of NO2 indoors are unvented gas heaters and cookers. Predictors of indoor NO2 are ventilation, season, and outdoor NO2 levels. VOCs are emitted from a wide range of indoor and outdoor sources, including smoking, solvent use, renovations, and household products. Formaldehyde levels are higher in newer houses and in the presence of new furniture, while PAH levels are higher in smoking households. High indoor particulate matter, NO2 and VOC levels were typically associated with respiratory symptoms, particularly asthma symptoms in children. (4) Conclusions: Household characteristics and occupant activities play a large role in indoor exposure, particularly cigarette smoking for PM2.5, gas appliances for NO2, and household products for VOCs and PAHs. Home location near high-traffic-density roads, redecoration, and small house size contribute to high indoor air pollution. In most studies, air exchange rates are negatively associated with indoor air pollution. These findings can inform interventions aiming to improve IAQ in residential properties in a variety of settings.


2018 ◽  
Vol 3 ◽  
pp. 133
Author(s):  
Prafulla Shriyan ◽  
Giridhara R Babu ◽  
Deepa Ravi ◽  
Yamuna Ana ◽  
Onno CP van Schayck ◽  
...  

Background: Exposure to air pollution (IAP) from the combustion of solid fuels is a significant cause of morbidity and mortality in developing countries. Pregnant women exposed to higher pollutant levels are at higher risk of delivering a low-birth-weight (LBW) baby. There is a lack of standardized data regarding the levels and types of specific pollutants and how they impact LBW. We aim to prospectively assess the association between ambient and indoor air pollution levels in pregnancy and low birth weight and understand the subsequent risk of adiposity in these infants. Methods: We will conduct a prospective cohort study of 516 pregnant women recruited before 18 weeks of gestation in the urban slums of Bangalore, who have voluntarily consented to participate. We will estimate the level of air pollutants including coarse particulate matter 10 ug/m3 (PM10 ), fine particulate matter 2.5 ug/m3(PM2.5) and carbon monoxide (CO) parts per million (ppm) levels in both indoor and ambient environment. The follow-up of the delivered children will be done at delivery until the infant is two years old. The association between pollutants and LBW will be evaluated using logistic regression adjusting for potential confounders.Further, we will explore the mediation role of LBW in the hypothesized causal chain of air pollution and adiposity. Nested within a larger Maternal Antecedents of Adiposity and Studying the Transgenerational role of Hyperglycemia and Insulin (MAASTHI) cohort, we can estimate the absolute risk of having low birth weight caused by air pollution and other variables. Discussion: Understanding the association between exposures to ambient and indoor air pollution and low birth weight is essential in India. LBW babies have a higher risk of developing obesity and Non-Communicable Diseases (NCDs) during adulthood. The results from this study can inform the efforts for controlling the air pollution-related chronic diseases in India.


Sign in / Sign up

Export Citation Format

Share Document