scholarly journals How Do Combustion and Non-Combustion Products Used Outdoors Affect Outdoor and Indoor Particulate Matter Levels? A Field Evaluation Near the Entrance of an Italian University Library

Author(s):  
Vittoria Cammalleri ◽  
Daniela Marotta ◽  
Carmela Protano ◽  
Matteo Vitali ◽  
Paolo Villari ◽  
...  

Particulate Matter (PM) is a well-known health risk factor and pollutes both outdoor and indoor air. Using PM as an air pollution indicator, the aims were to assess outdoor and indoor air pollution due to combustion and/or non-combustion products used outdoors and to compare the PM levels emitted by different products. PM with an aerodynamic diameter ≤10, 4, 2.5 and 1 µm (PM10, PM4, PM2.5, PM1) was simultaneously measured in two areas, respectively, indoors (with smoking ban) and outdoors (where people commonly smoke) of a university library during the morning and the afternoon of two weekdays. Both combustion and non-combustion products determined a relevant worsening of outdoor air quality, with the highest PM1 levels achieved when a single traditional cigarette (9920 µg m−3), a single e-cigarette (9810 µg m−3) and three simultaneous traditional cigarettes (8700 µg m−3) were smoked. An increase of indoor PM1 levels was found during outdoor smoking/vaping sessions, persisting also after the end of sessions. The results highlighted the need for a revision of smoke-free laws, especially for outdoor areas, to include non-combustion products. In addition, it is essential to make society aware of the dangers of smoking outdoors by implementing health promotion interventions.

2019 ◽  
Vol 5 (1) ◽  
pp. 00052-2018 ◽  
Author(s):  
Aneesa Vanker ◽  
Polite M. Nduru ◽  
Whitney Barnett ◽  
Felix S. Dube ◽  
Peter D. Sly ◽  
...  

Indoor air pollution (IAP) or environmental tobacco smoke (ETS) exposure may influence nasopharyngeal carriage of bacterial species and development of lower respiratory tract infection (LRTI). The aim of this study was to longitudinally investigate the impact of antenatal or postnatal IAP/ETS exposure on nasopharyngeal bacteria in mothers and infants.A South African cohort study followed mother–infant pairs from birth through the first year. Nasopharyngeal swabs were taken at birth, 6 and 12 months for bacterial culture. Multivariable and multivariate Poisson regression investigated associations between nasopharyngeal bacterial species and IAP/ETS. IAP exposures (particulate matter, carbon monoxide, nitrogen dioxide, volatile organic compounds) were measured at home visits. ETS exposure was measured through maternal and infant urine cotinine. Infants received the 13-valent pneumococcal andHaemophilus influenzaeB conjugate vaccines.There were 881 maternal and 2605 infant nasopharyngeal swabs. Antenatal ETS exposure was associated withStreptococcus pneumoniaecarriage in mothers (adjusted risk ratio (aRR) 1.73 (95% CI 1.03–2.92)) while postnatal ETS exposure was associated with carriage in infants (aRR 1.14 (95% CI 1.00–1.30)) Postnatal particulate matter exposure was associated with the nasopharyngeal carriage ofH. influenzae(aRR 1.68 (95% CI 1.10– 2.57)) orMoraxella catarrhalis(aRR 1.42 (95% CI 1.03–1.97)) in infants.Early-life environmental exposures are associated with an increased prevalence of specific nasopharyngeal bacteria during infancy, which may predispose to LRTI.


2015 ◽  
Vol 244 ◽  
pp. 182-187 ◽  
Author(s):  
Silvia Vilcekova ◽  
Judita Kubinova ◽  
Eva Kridlova Burdova

Increase in particulate matter air contamination and its negative impact on human health have resulted in efforts to monitor and identify the sources. Particles are produced by photochemical atmospheric reactions and the coagulation of combustion products from automobiles and stationary sources, with lifetimes of several days or more. The occurrence of particulate matters indoors depends on outdoor pollution and its transport indoors as well as on the presence of indoor sources. This paper aims to carry out a measuring of particular matters concentrations in indoor air of selected buildings and in outdoor air in village of Jasov. The mass concentrations of particulate matters for fractions of 0.5, 1.0, 2.5, 5.0, and 10.0 micrometers were measured and evaluated in order to determine the extent of exposure of people.


Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1326
Author(s):  
Rohit Chakraborty ◽  
James Heydon ◽  
Martin Mayfield ◽  
Lyudmila Mihaylova

This study concerns the levels of particulate matter (PM2.5 and PM1) released by residential stoves inside the home during ‘real world’ use. Focusing on stoves that were certified by the UK’s Department of Environment, Food, and Rural Affairs (DEFRA), PM sensors were placed in the vicinity of 20 different stoves over four weeks, recording 260 uses. The participants completed a research diary in order to provide information on time lit, amount and type of fuel used, and duration of use, among other details. Multivariate statistical tools were used in order to analyse indoor PM concentrations, averages, intensities, and their relationship to aspects of stove management. The study has four core findings. First, the daily average indoor PM concentrations when a stove was used were higher for PM2.5 by 196.23% and PM1 by 227.80% than those of the non-use control group. Second, hourly peak averages are higher for PM2.5 by 123.91% and for PM1 by 133.09% than daily averages, showing that PM is ‘flooding’ into indoor areas through normal use. Third, the peaks that are derived from these ’flooding’ incidents are associated with the number of fuel pieces used and length of the burn period. This points to the opening of the stove door as a primary mechanism for introducing PM into the home. Finally, it demonstrates that the indoor air pollution being witnessed is not originating from outside the home. Taken together, the study demonstrates that people inside homes with a residential stove are at risk of exposure to high intensities of PM2.5 and PM1 within a short period of time through normal use. It is recommended that this risk be reflected in the testing and regulation of residential stoves.


Author(s):  
Krassi Rumchev ◽  
Mario Soares ◽  
Yun Zhao ◽  
Christopher Reid ◽  
Rachel Huxley

Background: Indoor air pollution is still considered one of the leading causes of morbidity and mortality worldwide. We aimed to investigate the potential association between indoor particulate matter (PM) and fasting clinic blood pressure in adult Australians. Methods: Sixty-three participants residing within the Perth metropolitan area were studied. Participants were aged between 18 and 65 years and free of major medical conditions. We conducted 24-h monitoring of residential PM concentrations, including the size fractions PM1, PM2.5, PM4, and PM10. All participants attended a clinical assessment at Curtin University following a 10–12 h overnight fast. Results: In this study we found that PM1 and PM2.5 were significantly associated with heart rate: a one interquartile range (IQR) increase in PM1 or PM2.5 was associated with a 4–6 beats per minute (bpm) increase in heart rate. Both PM10 and total PM exposure had a significant impact on systolic blood pressure (SBP): a one IQR increase in PM10 and total PM were associated with a 10 mmHg (95% CI: 0.77–20.05) and 12 mmHg (2.28–22.43 mmHg) increase in SBP, respectively. Conclusion: The study findings provide additional support to the thesis that indoor air pollution is an important modifiable factor in the risk of hypertension.


2019 ◽  
Vol 3 ◽  
pp. 133
Author(s):  
Prafulla Shriyan ◽  
Giridhara R Babu ◽  
Deepa Ravi ◽  
Yamuna Ana ◽  
Onno CP van Schayck ◽  
...  

Background: Exposure to air pollution (IAP) from the combustion of solid fuels is a significant cause of morbidity and mortality in developing countries. Pregnant women exposed to higher pollutant levels are at higher risk of delivering a low-birth-weight (LBW) baby. There is a lack of standardized data regarding the levels and types of specific pollutants and how they impact LBW. We aim to prospectively assess the association between ambient and indoor air pollution levels in pregnancy and low birth weight and understand the subsequent risk of adiposity in these infants. Methods: We will conduct a prospective cohort study of 516 pregnant women recruited before 18 weeks of gestation in the urban slums of Bangalore, who have voluntarily consented to participate. We will estimate the level of air pollutants including coarse particulate matter 10 ug/m3 (PM10 ), fine particulate matter 2.5 ug/m3(PM2.5) and carbon monoxide (CO) parts per million (ppm) levels in both indoor and ambient environment. The follow-up of the delivered children will be done at delivery until the infant is two years old. The association between pollutants and LBW will be evaluated using logistic regression adjusting for potential confounders.Further, we will explore the mediation role of LBW in the hypothesized causal chain of air pollution and adiposity. Nested within a larger Maternal Antecedents of Adiposity and Studying the Transgenerational role of Hyperglycemia and Insulin (MAASTHI) cohort, we can estimate the absolute risk of having low birth weight caused by air pollution and other variables. Discussion: Understanding the association between exposures to ambient and indoor air pollution and low birth weight is essential in India. LBW babies have a higher risk of developing obesity and Non-Communicable Diseases (NCDs) during adulthood. The results from this study can inform the efforts for controlling the air pollution-related chronic diseases in India.


2020 ◽  
Author(s):  
Anu Dahal ◽  
Indira Parajuli

Abstract Indoor Air Pollution (IAP) from smoky cooking fires causes deaths over 22,800 per year being the fourth leading cause of death in Nepal. The study aims to compare the pollution level particularly Carbon Monoxide (CO) and Particulate Matter (PM 2.5 ) in different firewood species. Two households one with ICS and TCS is selected purposively to monitor the concentration of pollutants in Ward no. 3 of Gatlang, Rasuwa, Nepal. IAP Meter based on Laser Sensor principle is used to monitor real time concentration of PM 2.5 and CO. 24 hours mean concentration of PM 2.5 and 8 hours mean average concentrations of CO are found to be above the WHO and National Indoor Air Quality Guidelines i.e. For ICS using household the concentration is found to be 155.26 µg/m 3 and 9 ppm respectively and household using TCS is found to be 385.12 µg/m 3 and 12.2 ppm). Both pollutants’ concentration is found less in Abies Spectabilis than other species. Positive correlation is found in both households along with moisture content, amount of firewood used, etc. This result suggests the use of Abies Spectabilis as it emits less emission as compared to other species as it has less moisture content that reduces the concentration of air pollution. Keywords : Carbon Monoxide 1 , Particulate Matter (PM 2.5 ) 2 , Indoor Air Pollution 3


2019 ◽  
Vol 11 (22) ◽  
pp. 6358
Author(s):  
Kim ◽  
Kang ◽  
Kang ◽  
Ham

Firefighters are known to be exposed to a variety of hazardous materials and combustion products during operational and training activities, as well as in fire stations. However, exposure to diesel exhaust emissions, classified as carcinogenic to humans by the International Agency for Research on Cancer (IARC), is also present in the fire station environment. In this study, concentrations of elemental carbon (EC), which is a surrogate of diesel exhaust and indoor air pollutants, has been measured to compare the effect of an exhaust reduction system (ERS) that was installed in the engine bays of two fire stations to mitigate indoor air pollution levels in the garage, duty offices, and dormitory/shower areas. The levels of most pollutants were reduced after the installation of the ERS. Pollutants may disperse inside of fire stations. Therefore, the ERS is a valuable strategy to mitigate pollutant exposure among firefighters and outdoor air pollution using the filtration ability of an ERS. The results of this study suggest that all truck bays should install an ERS to reduce pollutant exposure and that installation is especially necessary for EURO 3 fire vehicles.


Sign in / Sign up

Export Citation Format

Share Document