scholarly journals Study On Effect of Boron Carbide, Aluminium Oxide and Graphite On Dry Sliding Wear Behaviour of Aluminium Based Metal Matrix Composite at Different Temperature

2021 ◽  
Vol 38 (1−2) ◽  
Author(s):  
Sharath BN ◽  
Venkatesh C V

The present research has been conducted to study the impact of boron carbide (B4C), aluminium oxide(Al2O3) and graphite on Aluminium 2219 (Al2219). According to current research, B4C and graphite material be a good substitute for Al2219.Reinforced composites and unreinforced Al2219 prepared by a stir casting process. A scanning electron microscope was used to analyze the reinforcement and distribution in the matrix and worn surface of the specimen. Exceptional wear resistance (30%) exhibited by  B4C and graphite-reinforced hybrid composite at 150 ºC in contrast with the unreinforced Al2219. The B4C and Gr reinforcement particulate existence improves the strengthening kinetics in the matrix phase at 150 °C. The artificial neural network used to get the test significance, normalized factor importance and absolute relative error of less than 1%.

Author(s):  
Sadineni Rama Rao ◽  
G. Padmanabhan ◽  
P.V. Chandra Shekar Rao

Aluminium composite materials are exponentially growing up and rapidly gaining importance because of their properties like low density, high strength, high stiffness, environmental resistance, low co-efficient of thermal expansion etc. In this context aluminum-boron carbide composites, with 2.5, 5 and 7.5 wt% of boron carbide (B4C) particulate reinforced, were prepared by stir casting process and the effect of the percentage of reinforcement of B4C on dry sliding wear and friction coefficient were investigated. The wear tests were carried out on a pin-on-disc type apparatus at a linear speed of 1m/s, sliding distance of 500 m and a constant load of 30 N. The coefficient of friction was recorded on line. Wear rates were calculated from mass loss measurements. Scanning electron microscope was used to examine the tribo-surface of worn Al- B4C composites. The results showed that the wear rate of 7.5 wt% B4C composites is 0.375 mg/min which is significantly lower than pure Al alloy (3.125 mg/min). The friction coefficient decreases from 0.477(for pure Al alloy) to 0.261(for 7.5 wt% B4C composites).


2018 ◽  
Vol 928 ◽  
pp. 162-167 ◽  
Author(s):  
B.M. Muthamizh Selvan ◽  
V. Anandakrishnan ◽  
Muthukannan Duraiselvam ◽  
R. Venkatraman ◽  
S. Sathish

Composite materials with aluminium alloy 8011 matrix and 0, 4 and 8 weight percentages of ZrB2reinforcements were synthesized by in-situ stir casting process. The presence and homogeneous distribution of the reinforcements were examined with X-ray diffraction analysis and scanning electron microscopic analysis. To investigate the effect of dry sliding wear parameters such as sliding distance, percentage reinforcement, load, sliding velocity and temperature on wear rate and co-efficient of friction, experiments were conducted using a pin on disc wear tester as per Taguchi’s orthogonal array design and the tribological behaviour of synthesized composites was investigated by statistical techniques. Significance and the influence of the parameters over the response were determined by analysis of variances and grey relational analysis was used to find the optimal combination of parameters to obtain minimum wear rate and co-efficient of friction.


Author(s):  
S.R. Ruban ◽  
K.L.Dev. Wins ◽  
J.D.R. Selvam ◽  
A.A. Richard

This paper investigates the dry sliding wear behaviour of AA6061/ZrB2/SiC hybrid composite prepared by the stir casting. A pin-on-disc wear apparatus was used for this study. The effect of ZrB2 and SiC particulate content and normal load on wear rate was analyzed. The insitu fabricated ZrB2 and the reinforced SiC particles enhance the wear resistance of the AA6061 composite. The worn surface analysis of the composite as a function of ZrB2 and SiC particulate content and normal load are also presented.


Author(s):  
V Vignesh Kumar ◽  
K Raja ◽  
T Ramkumar ◽  
M Selvakumar ◽  
TS Senthil Kumar

The research article addresses the reciprocating wear behaviour of hybrid AA7075 reinforced with boron carbide and boron nitride through a stir-casting technique. The experiment involved varying wt.% of the secondary particle boron carbide (3, 6 and 9) while boron nitride (3) was kept as constant. The hybrid composites were characterised using scanning electron microscopy coupled with energy dispersive spectroscopy. The hardness and tensile behaviour of the hybrid composites were evaluated. Reciprocating wear behaviour of the hybrid composites were examined using a tribometer by varying the wear parameters such as load and sliding distance. The results revealed that AA7075/6boron carbide/3boron nitride had better hardness, tensile and wear properties. The surface morphology of the wear samples was analysed using SEM.


2021 ◽  
pp. 002199832110055
Author(s):  
Zeeshan Ahmad ◽  
Sabah Khan

Alumnium alloy LM 25 based composites reinforced with boron carbide at different weight fractions of 4%, 8%, and 12% were fabricated by stir casting technique. The microstructures and morphology of the fabricated composites were studied by scanning electron microscopy and energy dispersive spectroscopy. Elemental mapping of all fabricated composites were done to demonstrate the elements present in the matrix and fabricated composites. The results of microstructural analyses reveal homogenous dispersion of reinforcement particles in the matrix with some little amount of clustering found in composites reinforced with 12% wt. of boron carbide. The mechanical characterization is done for both alloy LM 25 and all fabricated composites based on hardness and tensile strength. The hardness increased from 13.6% to 21.31% and tensile strength 6.4% to 22.8% as reinforcement percentage of boron carbide particles increased from 0% to 12% wt. A fractured surface mapping was also done for all composites.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sakthi Sadhasivam RM ◽  
Ramanathan K. ◽  
Bhuvaneswari B.V. ◽  
Raja R.

Purpose The most promising replacements for the industrial applications are particle reinforced metal matrix composites because of their good and combined mechanical properties. Currently, the need of matrix materials for industrial applications is widely satisfied by aluminium alloys. The purpose of this paper is to evaluate the tribological behaviour of the zinc oxide (ZnO) particles reinforced AA6061 composites prepared by stir casting route. Design/methodology/approach In this study, AA6061 aluminium alloy matrix reinforced with varying weight percentages (3%, 4.5% and 6%) of ZnO particles, including monolithic AA6061 alloy samples, is cast by the most economical fabrication method, called stir casting. The prepared sample was subjected to X-ray photoelectron spectroscopy (XPS) analysis, experimental density measurement by Archimedian principle and theoretical density by rule of mixture and hardness test to investigate mechanical property. The dry sliding wear behaviour of the composites was investigated using pin-on-disc tribometer with various applied loads of 15 and 20 N, with constant sliding velocity and distance. The wear rate, coefficient of friction (COF) and worn surfaces of the composite specimens and their effects were also investigated in this work. Findings XPS results confirm the homogeneous distribution of ZnO microparticles in the Al matrix. The Vickers hardness result reveals that higher ZnO reinforced (6%) sample have 34.4% higher values of HV than the monolithic aluminium sample. The sliding wear tests similarly show that increasing the weight percentage of ZnO particles leads to a reduced wear rate and COF of 30.01% and 26.32% lower than unreinforced alloy for 15 N and 36.35% and 25% for 20 N applied load. From the worn surface morphological studies, it was evidently noticed that ZnO particles dispersed throughout the matrix and it had strong bonding between the reinforcement and the matrix, which significantly reduced the plastic deformation of the surfaces. Originality/value The uniqueness of this work is to use the reinforcement of ZnO particles with AA6061 matrix and preparing by stir casting route and to study and analyse the physical, hardness and tribological behaviour of the composite materials.


2021 ◽  
Vol 73 (6) ◽  
pp. 980-985
Author(s):  
Kalaiyarasan A ◽  
Sundaram S ◽  
Gunasekaran K ◽  
Bensam Raj J.

Purpose Aerospace field is demanding a material with superior strength and high resistance against wear, tear and corrosion. The current study aimed to develop a new material with high performance to be applicable in aerospace field Design/methodology/approach A metal matrix composite AA8090-WC-ZrC was fabricated using stir casting method and its tribological behavior was investigated. Totally, five composites viz. AA/Z, AA/W, AA/WZ (1:3), AA/WZ (1:1) & AA/WZ (3:1) were prepared. Micro hardness, tensile and wear study were performed on the fabricated composites and the results were compared with AA8090 alloy Findings Vickers hardness test resulted that the AA/W composite showed the higher hardness value of 160 HB compared to other materials due to the reinforcing effect of WC particles with high hardness. Tensile test reported that the AA/W composite displayed the maximum tensile strength of 502 MPa owing to the creation of more dislocation density. Further, wear study showed that the AA/W composite exhibited the least wear rate of 0.0011 mm3/m because of the more resisting force offered by the WC particles. Furthermore, the AA/W composite showed the slightest mass loss of 0.0028 g and lower COF value of 0.31 due to the hinder effect of WC particle to the movement of atoms in AA8090 alloy Originality/value This work is original in the field of aerospace engineering and materials science which deals with the fabrication of AA8090 alloy with the reinforcement particles such as tungsten carbide and zirconium carbide. The impact of the combination of hybrid particles and their volume fractions on the tribological properties has been investigated in this work. This work would provide new scientific information to society.


Sign in / Sign up

Export Citation Format

Share Document