Experimental and Numerical Investigation into Residual Stress During Turning Operation for Stainless Steel AISI 316

2020 ◽  
Vol 38 (12A) ◽  
pp. 1862-1870
Author(s):  
Safa M. Lafta ◽  
Maan A. Tawfiq

RS (residual stresses) represent the main role in the performance of structures and machined parts. The main objective of this paper is to investigate the effect of feed rate with constant cutting speed and depth of cut on residual stresses in orthogonal cutting, using Tungsten carbide cutting tools when machining AISI 316 in turning operation. AISI 316 stainless steel was selected in experiments since it is used in many important industries such as chemical, petrochemical industries, power generation, electrical engineering, food and beverage industry. Four feed rates were selected (0.228, 0.16, 0.08 and 0.065) mm/rev when cutting speed is constant 71 mm/min and depth of cutting 2 mm. The experimental results of residual stresses were (-15.75, 12.84, 64.9, 37.74) MPa and the numerical results of residual stresses were (-15, 12, 59, and 37) MPa. The best value of residual stresses is (-15.75 and -15) MPa when it is in a compressive way. The results showed that the percentage error between numerical by using (ABAQUS/ CAE ver. 2017) and experimental work measured by X-ray diffraction is range (2-15) %.

2010 ◽  
Vol 447-448 ◽  
pp. 51-54
Author(s):  
Mohd Fazuri Abdullah ◽  
Muhammad Ilman Hakimi Chua Abdullah ◽  
Abu Bakar Sulong ◽  
Jaharah A. Ghani

The effects of different cutting parameters, insert nose radius, cutting speed and feed rates on the surface quality of the stainless steel to be use in medical application. Stainless steel AISI 316 had been machined with three different nose radiuses (0.4 mm 0.8 mm, and 1.2mm), three different cutting speeds (100, 130, 170 m/min) and feed rates (0.1, 0.125, 0.16 mm/rev) while depth of cut keep constant at (0.4 mm). It is seen that the insert nose radius, feed rates, and cutting speed have different effect on the surface roughness. The minimum average surface roughness (0.225µm) has been measured using the nose radius insert (1.2 mm) at lowest feed rate (0.1 mm/rev). The highest surface roughness (1.838µm) has been measured with nose radius insert (0.4 mm) at highest feed rate (0.16 mm/rev). The analysis of ANOVA showed the cutting speed is not dominant in processing for the fine surface finish compared with feed rate and nose radius. Conclusion, surface roughness is decreasing with decreasing of the feed rate. High nose radius produce better surface finish than small nose radius because of the maximum uncut chip thickness decreases with increase of nose radius.


Here, we found and observed different results of experimental work in dry turning of S31700 grade stainless steels using coated and uncoated cemented carbides. The turning tests were conducted at three different cutting speeds (150and 200m/min) while feed rate and depth of cut were kept constant at 0.3 mm/rev and 1 mm, respectively. The cutting tools used were ISO P30 uncoated and TiN-TiCN-Al2O3 -ZrCN coated cemented carbides. We found the influences of cutting speed on the average flank wear. The worn parts of the cutting tools were also examined using optical microscopy and SEM. Here we concluded that cutting speed significantly affected the average flank wear. The multilayer effects superior resistance to tool wear compared to its uncoated counterpart in the entire range of cutting speeds during turning of S31700 stainless (AISI317) steel.


2020 ◽  
Vol 38 (3A) ◽  
pp. 394-401
Author(s):  
Safa M. Lafta ◽  
Maan A. Tawfiq

RS have an important role in the performance of components and machined structures. The objective of this paper is to study the influence of cutting speed on RS in workpieces that are formed in orthogonal cutting. AISI 316L stainless steel since it has been used in many important industries such as chemical, petrochemical industries, power generation, electrical engineering, and food and beverage industry. Four cutting speeds are selected: (44, 56, 71 and 88) m/min. The alloy was machined by turning at constant depth of cut and various feed rate from (0.065 to 0.228) mm/rev. Residual stresses are examined by X-ray diffraction. The best results of RS obtained are (-3735.28, -1784.95, -330.142, -218.747, -890.758, -2999.632, -2990.401) MPa. Increasing the cutting speed from (44-56) m/min. reduces the compressive residual stress by (21.4 %), while from (71-88) m/min the RS is reduced by (19.3 %). Finally, the RS at cutting speeds are changed from compression to tension.


Machines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 75
Author(s):  
Nikolaos E. Karkalos ◽  
Panagiotis Karmiris-Obratański ◽  
Szymon Kurpiel ◽  
Krzysztof Zagórski ◽  
Angelos P. Markopoulos

Surface quality has always been an important goal in the manufacturing industry, as it is not only related to the achievement of appropriate geometrical tolerances but also plays an important role in the tribological behavior of the surface as well as its resistance to fatigue and corrosion. Usually, in order to achieve sufficiently high surface quality, process parameters, such as cutting speed and feed, are regulated or special types of cutting tools are used. In the present work, an alternative strategy for slot milling is adopted, namely, trochoidal milling, which employs a more complex trajectory for the cutting tool. Two series of experiments were initially conducted with traditional and trochoidal milling under various feed and cutting speed values in order to evaluate the capabilities of trochoidal milling. The findings showed a clear difference between the two milling strategies, and it was shown that the trochoidal milling strategy is able to provide superior surface quality when the appropriate process parameters are also chosen. Finally, the effect of the depth of cut, coolant and trochoidal stepover on surface roughness during trochoidal milling was also investigated, and it was found that lower depths of cut, the use of coolant and low values of trochoidal stepover can lead to a considerable decrease in surface roughness.


2010 ◽  
Vol 1 (1) ◽  
pp. 102-106
Author(s):  
G. Farkas ◽  
Gabor Kalacska

We would like to present in this article the results of the microgeometrical study of theengineering polymer surfaces and the applied cutting tools. We compare the effects of differenttechnological parameters (cutting speed, cutting feed, depth of cut) having on the microgeometricalcharacteristics (Ra, Rz) and we summarise the results and conclusions from the practical engineeringlife.


2011 ◽  
Vol 418-420 ◽  
pp. 1482-1485 ◽  
Author(s):  
Erry Yulian Triblas Adesta ◽  
Muataz Al Hazza ◽  
Delvis Agusman ◽  
Agus Geter Edy Sutjipto

The current work presents the development of cost model for tooling during high speed hard turning of AISI 4340 hardened steel using regression analysis. A set of experimental data using ceramic cutting tools, composed approximately of Al2O3 (70%) and TiC (30%) on AISI 4340 heat treated to a hardness of 60 HRC was obtained in the following design boundary: cutting speeds (175-325 m/min), feed rate (0.075-0.125 m/rev), negative rake angle (0 to -12) and depth of cut of (0.1-0.15) mm. The output data is used to develop a new model in predicting the tooling cost using in terms of cutting speed, feed rate, depth of cut and rake angle. Box Behnken Design was used in developing the model. Predictive regression model was found to be capable of good predictions the tooling cost within the boundary design.


2015 ◽  
Vol 94 ◽  
pp. 01035
Author(s):  
Chaofeng Liu ◽  
Zengqiang Wang ◽  
Guang Zhang ◽  
Lei Liu

2021 ◽  
Author(s):  
Hüseyin Gürbüz ◽  
Şehmus Baday

Abstract Although Inconel 718 is an important material for modern aircraft and aerospace, it is a kind material, which is known to have low machinability. Especially, while these types of materials are machined, high cutting temperatures, BUE on cutting tool, high cutting forces and work hardening occur. Therefore, in recent years, instead of producing new cutting tools that can withstand these difficult conditions, cryogenic process, which is a heat treatment method to increase the wear resistance and hardness of the cutting tool, has been applied. In this experimental study, feed force, surface roughness, vibration, cutting tool wear, hardness and abrasive wear values that occurred as a result of milling of Inconel 718 material by means of cryogenically treated and untreated cutting tools were investigated. Three different cutting speeds (35-45-55 m/min) and three different feed rates (0.02-0.03-0.04 mm/tooth) at constant depth of cut (0.2 mm) were used as cutting parameters in the experiments. As a result of the experiments, lower feed forces, surface roughness, vibration and cutting tool wear were obtained with cryogenically treated cutting tools. As the feed rate and cutting speed were increased, it was seen that surface roughness, vibration and feed force values increased. At the end of the experiments, it was established that there was a significant relation between vibration and surface roughness. However, there appeared an inverse proportion between abrasive wear and hardness values. While BUE did not occur during cryogenically treated cutting tools, it was observed that BUE occurred in cutting tools which were not cryogenically treated.


2006 ◽  
Vol 315-316 ◽  
pp. 588-592 ◽  
Author(s):  
Wei Zhao ◽  
Ning He ◽  
Liang Li ◽  
Z.L. Man

High speed milling experiments using nitrogen-oil-mist as cutting medium were undertaken to investigate the characteristics of tool wear for Ti-6Al-4V Alloy, a kind of important and commonly used titanium alloy in the aerospace and automobile industries. Uncoated carbide tools have been applied in the experiments. The cutting speed was 300 m/min. The axial depth of cut and the radial depth of cut were kept constant at 5.0 mm and 1.0 mm, respectively. The feed per tooth was 0.1 mm/z. Optical and scanning electron microscopes have been utilized to determine the wear mechanisms of the cutting tools, and energy spectrum analysis has been carried out to measure the elements distribution at the worn areas. Meanwhile, comparisons were made to discuss the influence of different cutting media such as nitrogen-oil-mist and air-oil–mist upon the tool wear. The results of this investigation indicate that the tool life in nitrogen-oil-mist is significantly longer than that in air-oil-mist, and nitrogen-oil-mist is more suitable for high speed milling of Ti-6Al-4V alloy than air-oil-mist.


2013 ◽  
Vol 393 ◽  
pp. 194-199 ◽  
Author(s):  
A.K.M. Nurul Amin ◽  
Muammer Din Arif ◽  
Noor Hawa B. Mohamad Rasdi ◽  
Khairus Syakirah B. Mahmud ◽  
Abdul Hakam B. Ibrahim ◽  
...  

Thermal or heat assisted machining is used to machine hard and difficult-to-machine materials such as Inconel and Titanium alloys. The main concept is that localized surface heating of the work-piece reduces the yield strength of the material significantly, making it amenable to plastic deformation and machining. Thus, heat assisted machining has been used for over a century. However, the heating technique and temperature are very much dependent on the type of working material. Therefore, a multitude of heating techniques has been applied over the years including Laser Assisted Machining (LAM) and Plasma Enhanced Machining (PEM) in the industry. But such processes are very expensive and have not been found in wide scale applications. The authors of the current research have therefore looked into the application of a simple Tungsten Inert Gas (TIG) welding setup to perform heat assisted turning of AISI 304 Stainless Steel. Such welding equipment is relatively cheap and available. Also, stainless steel is perennially used in the industry for high strength applications. Hence, it is very important to determine with optimal cutting temperature when applying a TIG setup for heat assisted machining of stainless steel. This paper describes three separate techniques for determining the optimum temperature. All three processes applied the same experimental setup but used different variables for evaluating the best temperature. The first process used vibration amplitude reduction with increment in temperature to identify the desired temperature. The second process used chip shrinkage coefficient to locate the same temperature. And finally, the third process investigated tool wear as a criterion for determining the optimum temperature. In all three cases the three primary cutting parameters: cutting speed, feed, and depth of cut, were varied in the same pattern. The results obtained from all three approaches showed that 450oC was undoubtedly the best temperature for heat assisted machining of stainless steel.


Sign in / Sign up

Export Citation Format

Share Document