Strut Confinement of Simply Supports Deep Beam Using Strut Reinforcement

2020 ◽  
Vol 38 (4A) ◽  
pp. 605-613
Author(s):  
Eyad K. Sayhood ◽  
Khudhayer N. Abdallah ◽  
Sarah J. Kazem

This study investigates the effect of confining the Strut region of the deep beam by using Struts Reinforcement; which consists of four main bars enclosed by stirrups. Six specimens were tested for investigating the behavior of deep beams including; ultimate load, mid-span deflection, crack pattern, first shear and first flexure cracks, concrete surface strain and mode of failure. The specimens were tested under two symmetrical points load with and of 1 and compressive strength of 38 MPa. The main parameters were: first one the diameter of the main bars of Strut Reinforcement (8, 10, 12 mm) with constant spacing of stirrups equal to 80 while the other parameter was varied spacing of stirrups of strut reinforcement (120, 100, and 80 mm) with constant main bars diameter of 8 mm. The test results showed that the Strut confinement generally increased the ultimate load from 750 kN to 1250 kN and the ductility of the beam, confined shear cracks and strain surface across the strut and shear area and turned failures mode from shear failure to flexure. The increase in the diameter of the main bars enhanced the behavior of the beam more than the stirrups number.   

2019 ◽  
Vol 3 (2) ◽  
pp. 105
Author(s):  
Arga Saputra ◽  
Sri Murni Dewi ◽  
Lilya Susanti

Initial design errors, especially the installation of stirrups, one of them can cause the beam having shear failure due to installing capacity of stirrups less than the shear capacity that occurs. Shear strengthening in this study used externally stirrups ∅6-75 which were installed in the shear area only. The results of calculation analysis, shear capacity can increase up to 137.82%; 133.42% and 137.12% while the test results increased by 31.58%; 0% and 4.76% in this caseload did not look significant from the results of calculation analysis. However, when viewed from crack pattern that occurs without external stirrups, outer ring has a combination of flexural and shear cracks occurs quite much, besides of flexural and shear cracks, combination of crack also occurs because of pressure beam reach pressure capacity first rather than tensile beam because the ratio of installed reinforcement is over reinforced. Meanwhile, in the beam with external stirrups, the crack pattern that occurs is also a combination of bending and shear cracks, but the cracks that occur are relatively less than the beam without external stirrups. When viewed from the deflection that occurred during the first crack, the reinforced beam experienced a relatively smaller deflection of 0.61 mm beam; 0.31 mm and 0.18 mm rather than beams without externally stirrups 1.28 mm; 0.55 mm and 0.32 mm, so that the beam with external stirrups can be said to be more rigid than the beam without external stirrups. Kesalahan desain awal, khususnya pemasangan sengkang, salah satunya dapat mengakibatkan balok mengalami kegagalan geser akibat kapasitas sengkang yang terpasang kurang dari kapasitas geser yang terjadi. Perkuatan geser pada penelitian ini menggunakan sengkang ∅6-75 yang dipasang pada daerah geser saja. Hasil dari perhitungan analisis, kapasitas geser dapat meningkat sampai 137,82%; 133,42% dan 137,12% sedangkan dari hasil pengujian mengalami peningkatan sebesar 31,58%; 0% dan 4,76% dalam hal ini peningkatan beban tidak terlihat sesignifikan dari hasil analisis perhitungan, namun jika dilihat dari pola retak yang terjadi beton tanpa perkuatan sengkang luar mengalami kombinasi retak lentur dan geser yang cukup banyak, selain kombinasi retak lentur dan geser, juga terjadi retak akibat balok tekan yang mencapai kapasitas tekan terlebih dahulu daripada balok tarik karena rasio tulangan yang terpasang over reinforced. Sementara itu pada balok dengan perkuatan sengkang luar, pola retak yang terjadi juga kombinasi retak lentur dan retak geser, namun retak yang terjadi relatif lebih sedikit daripada balok tanpa perkuatan. Jika ditinjau dari lendutan yang terjadi pada saat crack pertama, balok yang diberi perkuatan mengalami lendutan yang relatif lebih kecil yaitu 0,61 mm; 0,31 mm dan 0,18 mm daripada balok tanpa perkuatan 1,28 mm; 0,55 mm dan 0,32 mm sehingga balok yang diperkuat dengan sengkang luar dapat dikatakan lebih kaku daripada balok tanpa perkuatan.


Author(s):  
Eko Darma ◽  
Ninik Paryati

One reinforced beam element that experiences a shear failure is a high beam; a beam that follows a requirement based on SNI-2847-2013 standard that have the proportion of sliding span (l) and the effective height (d) not more than three. The type of collapse in high beams generally is shear failure in which the crack appears from the area around the placement, propagates and reaching the maximum value at the point of loading. Observation of crack patterns and ultimate loads can be done by several methods based on both non-linearity and linearity of materials. Two specimens consisted of one high beam conventional reinforced concrete and one high beam concrete fiber with a dimension of 170 mm x 420 mm x 850 mm were prepared. Fiber from machine turning waste was used as coarse aggregate substitution with 100% composition in fiber concrete. Both specimens were tested in the laboratory and observed for crack patterns analysis and ultimate load achievement. The experimental test results were then compared with the numerical test results for the non-linearity properties of the material and the Strut and Tie method for the linearity properties of the material. The ultimate high beam of conventional reinforced concrete when experiencing shear failure in the experimental method, numeric method, and strut and tie method were 310 KN, 290 KN, and 236.917 KN respectively,  whereas in the high beam fiber concrete, the ultimate load in the experimental method, numeric method, and in the strut and tie method were 280 KN, 260 KN, and 263,917 KN respectively. The biggest ratio of test results were obtained from the comparison between the numerical and the experimental methods in conventional concrete which was equal to 0.94. This showed the similarity of non-linearity properties of the material to produce adjacent test results.


2014 ◽  
Vol 578-579 ◽  
pp. 196-200
Author(s):  
Jian Sheng Fan ◽  
Wen Liu

Push-out tests were conducted to study the performance of shear studs in composite beams with profiled sheeting. All stud specimens were through-deck welded on steel beams. Three variables, i.e. the presence of profiled sheeting, the direction of the steel sheeting and the loading patterns were studied. Comparison between test results and predictions according to design specifications were also proposed. The research shows that, direction of the profiled steel sheeting has little influence on the ultimate load with shank shearing failure; shear failure of concrete rib decreases the shear strength; and the shear resistance of a parallel concrete rib is about twice of a transverse one.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Rajinder Ghai ◽  
Prem Pal Bansal ◽  
Maneek Kumar

There is a common phenomenon of shear failure in RCC beams, especially in old buildings and bridges. Any possible strengthening of such beams is needed to be explored that could strengthen and make them fit for serviceable conditions. The present research has been made to determine the performance of predamaged beams strengthened with three-layered wire mesh polymer-modified ferrocement (PMF) with 15% styrene-butadiene-rubber latex (SBR) polymer. Forty-eight shear-designed and shear-deficient real-size beams were used in this experimental work. Ultimate shear load-carrying capacity of control beams was found at two different shear-span (a/d) ratios 1 and 3. The sets of remaining beams were loaded with different predetermined damage levels of 45%, 75%, and 95% of the ultimate load values and then strengthened with 20 mm thick PMF. The strengthened beams were then again tested for ultimate load-carrying capacity by conducting the shear load test at a/d = 1 and 3. As a result, the PMF-strengthened beams showed restoration and enhancement of ultimate shear load-carrying capacity by 5.90% to 12.03%. The ductility of strengthened beams was improved, and hence, the corresponding deflections were prolonged. On the other hand, the cracking pattern of PMF-strengthened beams was also improved remarkably.


2021 ◽  
Vol 245 ◽  
pp. 112951
Author(s):  
Liu Jin ◽  
Yushuang Lei ◽  
Wenxuan Yu ◽  
Xiuli Du

2012 ◽  
Vol 38 (4) ◽  
pp. 418-423 ◽  
Author(s):  
E. McDonald ◽  
J. A. Gordon ◽  
J. M. Buckley ◽  
L. Gordon

Our goal was to investigate and compare the mechanical properties of multifilament stainless steel suture (MFSS) and polyethylene multi-filament core FiberWire in flexor tendon repairs. Flexor digitorum profundus tendons were repaired in human cadaver hands with either a 4-strand cruciate cross-lock repair or 6-strand modified Savage repair using 4-0 and 3-0 multifilament stainless steel or FiberWire. The multifilament stainless steel repairs were as strong as those performed with FiberWire in terms of ultimate load and load at 2 mm gap. This study suggests that MFSS provides as strong a repair as FiberWire. The mode of failure of the MFSS occurred by the suture pulling through the tendon, which suggests an advantage in terms of suture strength.


2017 ◽  
Vol 902 ◽  
pp. 33-40
Author(s):  
Cong Thuat Dang ◽  
Ngoc Hieu Dinh

Old reinforced concrete buildings constructed around 1980’s in many developing countries have been designed against mainly gravity load. Beam-column joints in these buildings contain slightly or no shear reinforcement inside the panel zones due to the construction convenience, and are vulnerable to shear failure in beam-column joints under the action of earthquake loads, especially for the exterior beam-column joints. This experimental study aimed to investigate the seismic performance of five half-scale exterior beam-column joints simulating the joints in existing reinforced-concrete buildings with non-shear hoop details. The test results showed that the structural performances of the beam-column joints under earthquake including failure mode, load-drift ratio relationship, shear strain of the joints and energy dissipation are strongly affected by the amount of longitudinal reinforcing bars of beams.


2011 ◽  
Vol 255-260 ◽  
pp. 1311-1314
Author(s):  
Lan Duan ◽  
Li Zheng ◽  
Chun Sheng Wang ◽  
Jing Yu Hu

This paper evaluates the shear resistance of hybrid I-beams fabricated by high performance steel and conventional steel. A number of hybrid I-beams are modeled and analyzed to determine their shear failure mechanism characteristics, considering parameters of web slenderness (hw/tw), frame action from end-stiffeners, ratio of flange width to web depth (bf/hw) and panel numbers. The analyses conclude that, in shear resistance calculation, plate beam with inter and slender webs often fail in inelastic or elastic shear buckling while ultimate shear resistance of compact webs is given by the shear strength of the material. What’s more, more rigid stiffeners provide more fixity to flange plates and increase the post-buckling resistance of plate beam. For plate beam with several panels, the shear stress at the ultimate load is similar. Finally, the I-beams with larger flange width to web depth ratio would develop larger shear strengths and then shear deformation cause formation of plastic hinges.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Tao Yang ◽  
Yunkang Rao ◽  
Huailin Chen ◽  
Bing Yang ◽  
Jiangrong Hou ◽  
...  

Understanding the failure mechanism and failure modes of multiface slopes in the Wenchuan earthquake can provide a scientific guideline for the slope seismic design. In this paper, the two-dimensional particle flow code (PFC2D) and shaking table tests are used to study the failure mechanism of multiface slopes. The results show that the failure modes of slopes with different moisture content are different under seismic loads. The failure modes of slopes with the moisture content of 5%, 8%, and 12% are shattering-shallow slip, tension-shear slip, and shattering-collapse slip, respectively. The failure mechanism of slopes with different water content is different. In the initial stage of vibration, the slope with 5% moisture content produces tensile cracks on the upper surface of the slope; local shear slip occurs at the foot of the slope and develops rapidly; however, a tensile failure finally occurs. In the slope with 8% moisture content, local shear cracks first develop and then are connected into the slip plane, leading to the formation of the unstable slope. A fracture network first forms in the slope with 12% moisture content under the shear action; uneven dislocation then occurs in the slope during vibration; the whole instability failure finally occurs. In the case of low moisture content, the tensile crack plays a leading role in the failure of the slope. But the influence of shear failure becomes greater with the increase of the moisture content.


2016 ◽  
Vol 858 ◽  
pp. 91-97
Author(s):  
Jun Hua Xiao ◽  
Wen Qi Zheng

To investigate the macroscopic mechanical properties of undisturbed structural Xiashu loess in the lower reaches of China’s Yangtze River under triaxial compression, and obtain the intrinsic explanations for the macroscopic mechanical properties from the microscopic point of view, in laboratory, triaxial compression tests were carried out, microstructure images of sheared samples were collected by scanning electron microscope (SEM), and quantitative parameters of microstructure (mainly about particle or pore size, distribution, and alignment) were extracted by digital image processing technique. Based on the test results, the deviator stress-strain relationships of both undisturbed and remoulded Xiashu loess, the structural strength, and the microstructural evolution mechanism about the formation of shear failure zone of Xiashu loess under triaxial compression were analyzed.


Sign in / Sign up

Export Citation Format

Share Document