Tests on Shear Studs Using Profiled Steel Sheeting Subjected to Cyclic Loading

2014 ◽  
Vol 578-579 ◽  
pp. 196-200
Author(s):  
Jian Sheng Fan ◽  
Wen Liu

Push-out tests were conducted to study the performance of shear studs in composite beams with profiled sheeting. All stud specimens were through-deck welded on steel beams. Three variables, i.e. the presence of profiled sheeting, the direction of the steel sheeting and the loading patterns were studied. Comparison between test results and predictions according to design specifications were also proposed. The research shows that, direction of the profiled steel sheeting has little influence on the ultimate load with shank shearing failure; shear failure of concrete rib decreases the shear strength; and the shear resistance of a parallel concrete rib is about twice of a transverse one.

Author(s):  
Hetao Hou ◽  
Ning Wang ◽  
Zengyun Zang

<p>To accomplish rapid installation and replaceability, a new type of connector for new fully assembled steel-concrete composite beams was studied. The connectors are fixed on the C-shaped channels of the prefabricated floor slab. The load transfer along the interface of the precast floor slab and the steel beam is primarily achieved through the friction between the beam flange and the channels. Push-out tests were conducted to study the mechanical properties of new composite beam. The effects of different C-shaped channel types, repeated loading and number of connectors were investigated. Test results showed that all the connectors exhibited satisfactory performance. When the section height of C-shaped channel is small, the restraining effect on the connector is more remarkable. The shear strength and shear stiffness of the connectors can be improved by reloading. The formulas for calculating the shear strength derived agree well with the experimental results.</p>


2011 ◽  
Vol 243-249 ◽  
pp. 1497-1503
Author(s):  
Qing Tian Su ◽  
Dong Fang Wang

Connectors are the key element in steel and concrete composite structure. To research and develop new type connector for steel and concrete composite structure, a new type connector, corrugated rib connector, was developed. The base mechanical properties of this connector were tested by push-out tests. The test results shown the mechanical properties of this connector are excellent. Comparing to the push-out test results of perfobond rib connector, the shear strength of corrugated rib connector increased 24 percent than that of the perfobond rib connector, and the shear stiffness of corrugated rib connector is larger than that of the perfobond rib connector, Especially the ductility of corrugated rib connector is 1.9 times that of the perfobond rib connector when they reach the ultimate load. Based on the load-slip relation of corrugated rib connector by push-out tests, relative stiffness expressions under normal service state and ultimate bearing capacity state are obtained.


2011 ◽  
Vol 255-260 ◽  
pp. 1311-1314
Author(s):  
Lan Duan ◽  
Li Zheng ◽  
Chun Sheng Wang ◽  
Jing Yu Hu

This paper evaluates the shear resistance of hybrid I-beams fabricated by high performance steel and conventional steel. A number of hybrid I-beams are modeled and analyzed to determine their shear failure mechanism characteristics, considering parameters of web slenderness (hw/tw), frame action from end-stiffeners, ratio of flange width to web depth (bf/hw) and panel numbers. The analyses conclude that, in shear resistance calculation, plate beam with inter and slender webs often fail in inelastic or elastic shear buckling while ultimate shear resistance of compact webs is given by the shear strength of the material. What’s more, more rigid stiffeners provide more fixity to flange plates and increase the post-buckling resistance of plate beam. For plate beam with several panels, the shear stress at the ultimate load is similar. Finally, the I-beams with larger flange width to web depth ratio would develop larger shear strengths and then shear deformation cause formation of plastic hinges.


Author(s):  
Mohammed Abdulhussein Al-Shuwaili ◽  
Alessandro Palmeri ◽  
Maria Teresa Lombardo

Push-out tests (POTs) have been widely exploited as an alternative to the more expensive full-scale bending tests to characterize the behaviour of shear connections in steel-concrete composite beams. In these tests, two concrete slabs are typically attached to a steel section with the connectors under investigation, which are then subjected to direct shear. The results allow quantifying the relationship between applied load and displacements at the steel-concrete interface. Since this relationship is highly influenced by the boundary conditions of POT samples, different experimental setups have been used, where the slabs are either restricted or free to slide horizontally, as researchers have tried to reduce any discrepancy between POT and full-scale composite beam testing. Based on a critical review of various POT configurations presented in the dedicated literature, this paper presents an efficient one-sided POT (OSPOT) method. While OSPOT and POT specimens are similar, in the proposed OPSPOT setup only one of the two slabs is directly loaded in each test, and the slab is free to move vertically. Thus, two results can be obtained from one specimen, i.e. one from each slab. A series of POTs and OSPOTs have been conducted to investigate the behaviour and the shear resistance of headed stud connectors through the two methods of testing. The results of this study than were compared with those of different POTs setups conducted by other researchers. The new OSPOT results show in general an excellent agreement with the analytical predictions offered by both British and European standards, as well as the estimated shear resistance proposed other researchers in the literature. These findings suggest that the proposed one-sided setup could be used as an efficient and economical option for conducting the POT, as it has the potential not only to double the number of results, but also to simplify the fabrication of the samples, which is important in any large experimental campaign, and to allow testing with limited capacity of the actuator. 


2018 ◽  
Vol 26 (1) ◽  
pp. 9-18
Author(s):  
Dooyong Cho ◽  
Jinwoong Choi ◽  
Hoseong Jeong

When Perfobond Rib shear connectors are used as flexural materials in structures such as bridges, they show flexural shear behavior due to external force, rather than direct shear behavior. The aim of this study is thus to analyze the difference between both behaviors. First, we prepared a specimen to analyze direct shear behavior using Perfobond Rib shear connectors, analyzed the characteristics of behavior with a push-out test and proposed a formula of shear resistance assessment. Proposed formula shows a relatively good fit with less than 10% error. A flexural shear test was then conducted based on the result of the direct shear test. Based on the static flexural test it analyzed the flexural behavior and the flexural shear stress it calculated. Direct shear stress and EN 1994-1-1 to lead and be calculated, it compared the flexural shear stress and it analyzed in about the shear resistance stress which it follows in load direction. Finally, we compared both test results, and the comparison showed that the flexural shear stress is approximately 6% stronger than the direct shear stress.


2011 ◽  
Vol 71-78 ◽  
pp. 3691-3694
Author(s):  
Feng Wu ◽  
Gang Li ◽  
Jin Qing Jia ◽  
Hong Nan Li

There are many adobe buildings in small towns and villages of China, which have low shear strength of mud in joints and suffer great damages in big earthquakes. Mud with three different proportions of soil and sand are used in adobe masonry to discuss shear behavior and strength in this paper. Adobe samples in tests were laid by mud with clay-silt soil: construction medium sand at ratios of 1:0.8, 1:1.0 and 1:1.2 respectively, and adobe brick at ratio of 1:1.0 which has good workability. Short straws are mixed into mud and brick at 0.5% by weight. By monotonous loading procedure parallel to bed joint, two bed joints in prisms behave double shear failure in sequence. Meanwhile shear strengths and force-displacement curves are also obtained. Fitting equation for adobe shear strength is calculated, and the calculated results are agree with test results well. Shear failure of adobe masonry behaves brittle from force-displacement curves.


2015 ◽  
Vol 36 (4) ◽  
pp. 47-55 ◽  
Author(s):  
Damian Stefaniuk ◽  
Matylda Tankiewicz ◽  
Joanna Stróżyk

Abstract The paper demonstrates the applicability of X-ray microtomography (ìCT) to analysis of the results of shear strength examinations of clayey soils. The method of X-ray three-dimensional imaging offers new possibilities in soil testing. The work focuses on a non-destructive method of evaluation of specimen quality used in shear tests and mechanical behavior of soil. The paper presents the results of examination of 4 selected clayey soils. Specimens prepared for the triaxial test have been scanned using ìCT before and after the triaxial compression tests. The shear strength parameters of the soils have been estimated. Changes in soil structure caused by compression and shear failure have been presented as visualizations of the samples tested. This allowed for improved interpretation and evaluation of soil strength parameters and recognition of pre-existing fissures and the exact mode of failure. Basic geometrical parameters have been determined for selected cross-sections of specimens after failure. The test results indicate the utility of the method applied in soil testing.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Bo Meng ◽  
Hongwen Jing ◽  
Shengqi Yang ◽  
Yingchao Wang ◽  
Biao Li

The shear behavior of concrete blocks reinforced by fully grouted bolts with different diameters was studied in this paper. More than 90 intact cubic samples (100 mm × 100 mm × 100 mm) with bolts ranging from 2 mm to 5 mm in diameter were tested at a constant stain rate of 0.5 mm/min. An oblique shear apparatus, which could simultaneously apply shear and normal force on tested samples at three slope angles (53°, 58°, and 63°) of a predetermined shear plane, was employed. The results indicate that the bolt has no evident influence on the shear behavior of intact concrete blocks at the prepeak shear strength stage. The bolt could significantly reduce the shear strength drop in the peak shear strength of the concrete block and contribute to reserving the residual shear strength of concrete blocks, especially at steep slope angles of the shear failure plane. The shear resistance provided by the bolt to the concrete block at the residual shear slip stage has a positive relationship with the diameter. The bolt with a larger diameter inflected in the vicinity of the shear failure plane of concrete block at the postpeak shear strength stage; additional normal force and direct shear resistance could still be persistently provided. Two empirical equations of the apparent cohesion and apparent internal angle of the bolted concrete block were obtained by linear regression considering rb, which is the ratio of the cross-sectional area of the bolt to that of the bolted concrete block.


1992 ◽  
Vol 19 (1) ◽  
pp. 1-10 ◽  
Author(s):  
M. R. Veldanda ◽  
M. U. Hosain

This paper summarizes the results of tests performed on 48 push-out specimens to investigate the feasibility of using perfobond rib type shear connectors in composite beams with ribbed metal decks placed parallel to the steel beams. The perfobond rib shear connector is a flat steel plate containing a number of holes. The results indicate that perfobond rib connectors can be effectively used in composite beams with ribbed metal decks placed parallel to the steel beams. An appreciable improvement in performance was observed in test specimens when additional reinforcing bars were passed through the perfobond rib holes. Shank shear was the principal mode of failure in specimens with headed studs. In specimens with perfobond rib, failure was triggered by the longitudinal splitting of the concrete slab, followed by the crushing of concrete in front of the perfobond rib. Key words: composite beam, shear connector, perfobond rib, headed stud, push-out test, metal deck.


Author(s):  
Mikihito Yoshida ◽  
Yasushi Nishimura

For the joints composed of steel beams and reinforced concrete columns, shear failure and bearing failure are the key failure modes. The shear failure indicates stable hysteresis loop without the strength degradation. On the other hand, the bearing failure mode indicates large pinching and strength degration after the attainment of the maximum load.Accordingly, bearing failure in the joints should not be caused in RCS system.To improve the bearing failure behavior of S beam - RC column joint, joint details using perfobond plate connectors were proposed. Perfobond plate connectors were attached on the upper and bottom flanges at right angles to the steel flange. The objective of this study is to clarify the effectiveness of proposed joints details experimentally and theoretically.Six specimens were tested. All specimens were T-shaped planar beam - column joints with 350mm square RC column and S beams with the width of 125mm and the depth of 300mm. The beams were all continuous through the column.Perfobond plate connectors were attached on the bottom flanges at right angles to the steel flange.Three holes were set up in the perfobond plate connectors. The experimental variable was the transverse reinforcement ratio of the joints. The transverse reinforcement ratio of the joints was 0.181% and 0.815%. For each transverse reinforcement ratio of the joints, specimen without the perfobond plate connectors, specimen with the perfobond plate connectors and specimen with the reinforcing bar inserted the hole of perfobond plate connectors were planned.For all specimens, the hysteresis loop showed the reversed S-shape. However, energy dissipation for specimens for specimens with perfobond plate connectors was larger than of specimen without perfobond plate connectors. Bearing strength of specimens with perfobond plate connectors was larger than that of specimen without perfobond plate connectors. From the test results, shear strength of concrete connector a hole was 0.7 times compression strength of concrete.On the other hand, shear strength of inserted reinforcing bar was 1.25 times shear strength of reinforcing bar.Based on the stress transferring mechanism and resistance mechanism of joints proposed by authors, the design formulae of joints with perfobond plate connectors were proposed.The predictions were shown to be in good agreement with the test results.


Sign in / Sign up

Export Citation Format

Share Document