scholarly journals The influence of CdCl2 layer and annealing process on the structural and electrical properties of CdTe films

2019 ◽  
Vol 11 (22) ◽  
pp. 8-13
Author(s):  
Mohammed A. Razooqi

A polycrystalline CdTefilms have been prepared by thermal evaporation technique on glass substrate at room temperature. The films thickness was about700±50 nm. Some of these films were annealed at 573 K for different duration times (60, 120 and 180 minutes), and other CdTe films followed by a layer of CdCl2 which has been deposited on them, and then the prepared CdTe films with CdCl2 layer have been annealed for the same conditions. The structures of CdTe films without and with CdCl2 layer have been investigated by X-ray diffraction. The as prepared and annealed films without and with CdCl2 layer were polycrystalline structure with preferred orientation at (111) plane. The better structural properties have been observed in presence of CdCl2 layer. The D.C conductivity for CdTe films with CdCl2 layershowed higher values. The electrical activation energy influenced with increasing duration times of annealing. Hall Effect measurement was indicated that all CdTe films are p-type. The carrier concentration, Hall mobility and the carrier life time wereaffected by increasing duration times of annealing.

2014 ◽  
Vol 11 (3) ◽  
pp. 1257-1260
Author(s):  
Baghdad Science Journal

In this work the effect of annealing temperature on the structure and the electrical properties of Bi thin films was studied, the Bi films were deposited on glass substrates at room temperature by thermal evaporation technique with thickness (0.4 µm) and rate of deposition equal to 6.66Å/sec, all samples are annealed in a vacuum for one hour. The X-ray diffraction analysis shows that the prepared samples are polycrystalline and it exhibits hexagonal structure. The electrical properties of these films were studied with different annealing temperatures, the d.c conductivity for films decreases from 16.42 ? 10-2 at 343K to 10.11?10-2 (?.cm)-1 at 363K. The electrical activation energies Ea1 and Ea2 increase from 0.031 to 0.049eV and from 0.096 to 0. 162 eV with increasing of annealing temperature from 343K to 363K, respectively. Hall measurements showed that all the films are p-type.


2019 ◽  
Author(s):  
Chem Int

Optically transparent single crystals of potassium acid phthalate (KAP, 0.5 g) 0.05 g and 0.1 g (1 and 2 mol %) trytophan were grown in aqueous solution by slow evaporation technique at room temperature. Single crystal X- ray diffraction analysis confirmed the changes in the lattice parameters of the doped crystals. The presence of functional groups in the crystal lattice has been determined qualitatively by FTIR analysis. Optical absorption studies revealed that the doped crystals possess very low absorption in the entire visible region. The dielectric constant has been studied as a function of frequency for the doped crystals. The thermal stability was evaluated by TG-DSC analysis.


2009 ◽  
Vol 6 (1) ◽  
pp. 129-134
Author(s):  
Baghdad Science Journal

Measurements of Hall effect properties at different of annealing temperature have been made on polycrystalline Pb0.55S0.45 films were prepared at room temperature by thermal evaporation technique under high vacuum 4*10-5 torr . The thickness of the film was 2?m .The carrier concentration (n) was observed to decrease with increasing the annealing temperature. The Hall measurements showed that the charge carriers are electrons (i.e n-type conduction). From the observed dependence on the temperature, it is found that the Hall mobility (µH), drift velocity ( d) carrier life time ( ), mean free path (?) were increased with increasing annealing temperature


2019 ◽  
Vol 1 (1) ◽  
pp. 42-45
Author(s):  
Tamiloli Devendhiran ◽  
Keerthika Kumarasamy ◽  
Mei–Ching Lin

Single crystals of 2-Aminothiazole 3,5-Dinitrobenzoic acid has been synthesized and good quality optical crystals were grown by slow evaporation technique at room temperature. The crystallinity nature of the grown crystal was confirmed from X-ray diffraction technique. An optical transmittance study was also carried out by UV – Vis spectra. FTIR spectra confirm the presence of functional groups in the grown crystal. The dielectric measurements were carried out in the range of 50Hz to 2MHz. The dielectric constant was seen to increase exponentially at lower frequencies. The microhardness studies were carried out using Vickers hardness indenter. Photoluminescence study shows that maximum emission occurs at 435nm.


2011 ◽  
Vol 418-420 ◽  
pp. 712-716 ◽  
Author(s):  
Shuai Zhang ◽  
Shu Ying Cheng ◽  
Hong Jie Jia ◽  
Hai Fang Zhou

Metallic-doping chalcogenide compounds have attracted significant interest in application of photovoltaic devices recently. In this article, Al-doped SnS films with a thickness of about 500 nm have been deposited on glass substrates by thermal evaporation technique. Al-doping concentration (from 0 at. % to 15 at.%) in the SnS films can be controlled accurately by varying Al layer thickness. The effects of Al–doping on the physical properties of the films have been investigated by X-ray diffraction, scanning electron microscopy, ultraviolet-visible-near infrared spectroscopy measurements and Hall effect measurement system. All the films are orthorhombic SnS with preferred (111) crystallites orientation, and they are of p-type conductivity. With the increasing of Al-doping concentration, the evaluated direct band gap Edir of the SnS: Al films decreases from 1.50eV to 1.29eV and the conductivities of the films increase. Therefore, the optical and semiconducting properties of the SnS films have been improved by Al-doping.


2014 ◽  
Vol 925 ◽  
pp. 164-168 ◽  
Author(s):  
Safaa I. Mohammed ◽  
Y. Al-Douri

The structural properties of Zn-doped and undoped lead iodide ( PbI2 ) nanostructures have been investigated. Zn-doped and undoped of ( PbI2 ) have been grown by chemical technique. Different doped and undoped PbI2 when prepared successfully by thermal evaporation technique an glass substrate at room temperature. Characterization and analysis using scanning electron microscopy (SEM) and X-ray diffraction (XRD) have indicated to the crystalline character. The particle size of Zn-PbI2 is larger than undoped PbI2.


2012 ◽  
Vol 717-720 ◽  
pp. 849-852
Author(s):  
Jung Ho Lee ◽  
Ji Hong Kim ◽  
Kang Min Do ◽  
Byung Moo Moon ◽  
Sung Jae Joo ◽  
...  

The characteristics of Ga-doped zinc oxide (GaZnO) thin films deposited at different substrate temperatures (TS~250 to 550oC) on 4H-SiC have been investigated. Structural and electrical properties of GaZnO thin film on n-type 4H-SiC (100)were investigated by using x-ray diffraction, atomic force microscopy (AFM), Hall effect measurement, and Auger electron spectroscopy (AES). Hall mobility is found to increase as the substrate temperature increase from 250 to 550 oC, whereas the lowest resistivity (~3.3 x 10-4 Ωcm) and highest carrier concentration (~1.33x1021cm-3) values are observed for the GaZnO films deposited at 400 oC. It has been found that the c-axis oriented crystalline quality as well as the relative amount of activated Ga3+ Introduction ions may affect the electrical properties of GaZnO films on SiC.


2014 ◽  
Vol 1061-1062 ◽  
pp. 209-214 ◽  
Author(s):  
Zi Yue Yang ◽  
Li Dong Wang ◽  
Rui Xuan Song ◽  
Dong Xing Zhang ◽  
Wei Dong Fei

Cu (In,Ga)Se2(CIGS) thin films were prepared by direct magnetron sputtering CIGS quaternary target at the substrate temperature varying from room temperature (RT) to 300 °C. The effects of substrate temperature on the structural and electrical properties of CIGS films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and Hall effect measurement. The CIGS thin films with a chalcopyrite structure were obtained between 100 and 300 °C and the crystallinity of films were enhanced with the increase of the substrate temperature from 100 to 300 °C. The film compositions were consisted with the target when the substrate temperatures were between RT and 200 °C, however, it deviated from the stoichiometry of the target when the substrate temperature was 300 °C. The CIGS films deposited at 200 °C had the higher carrier mobility of 3.522 cm2/Vs.


2011 ◽  
Vol 8 (1) ◽  
pp. 134-140
Author(s):  
Baghdad Science Journal

The paper reports the influence of annealing temperature under vacuum for one hour on the some structural and electrical properties of p-type CdTe thin films were grown at room temperature under high vacuum by using thermal evaporation technique with a mean thickness about 600nm. X-ray diffraction analysis confirms the formation of CdTe cubic phase at all annealing temperature. From investigated the electrical properties of CdTe thin films, the electrical conductivity, the majority carrier concentration, and the Hall mobility were found increase with increasing annealing temperatures.


1989 ◽  
Vol 33 ◽  
pp. 109-120 ◽  
Author(s):  
Toru Takayama ◽  
Yoshiro Matsumoto

AbstractThe grazing-incidence X-ray diffraction (GIXD) method was employed to analyze two-layer thin films, which were the samples of Å lOO Å Au/500Å Cu/Si02(substrate) and 250Å Cu/500Å Au/SiO2(substrate), which were prepared by the evaporation technique under the condition that the SiO2substrate was at room temperature. Diffraction profiles were obtained at various glancing angles ( α ) and the data were analyzed as a function of α. The results were as follows : 1) Diffraction peaks were shifted to larger diffraction angles, because of the refraction of the incident X-ray beam. The angular shift has been approximated by the equation, α - α2- αc2)1/2, where αcis the total ref reflection critical angle of the material. 2) As a result of the correction of angular shift, the stress of the evaporated films was estimated to be null. 3) The broadening of the Cu diffraction peak and the enhancement of the Cu diffraction intensity occurred at angles near αcof Cu, due to the reflection of the X-ray beam at the Cu/Au interface.


Sign in / Sign up

Export Citation Format

Share Document