scholarly journals PENGARUH PENAMBAHAN ABU SERABUT KELAPA TERHADAP KUAT TEKAN BETON

UKaRsT ◽  
2019 ◽  
Vol 3 (2) ◽  
pp. 52
Author(s):  
Nur Azizah Affandy ◽  
Agus Imam Bukhori

Concrete is a composite material (mixture) of several materials, whose main material consists of a mixture of cement, fine aggregates, coarse aggregates, water and or without other added ingredients coconut fibers are only used for broom materials, rugs, ropes and household appliances.Therefore, the addition of burning concrete into coconut ash ash is tried.The method used was experimental carried out in the laboratory with the production of 12 test pieces with presentations of 0%, 0.25%, 0.5% and 0.75% at 7 days.Laboratory test results on the addition of coconut fiber ash to the normal K 100 presentation were 16.505 MPa, coconut fiber ash mixture 0.25% reached 23.895 MPa, coconut fiber ash mixture 0.5% reached 23.656 MPa, the highest fiber ash mixture concrete 0.75% coconut can reach compressive strength of 23,688 MPa.

2020 ◽  
Vol 6 (4) ◽  
pp. 462-471

Abstract: The composition of the concrete mixture determines the compressive strength. Concrete mixtures generally consist of cement, water, coarse aggregates, fine aggregates, and concrete drugs. In this study, it will be tried to mix stone ash and coconut fibers. The purpose of this study is to find out the concrete compressive strength with add stone ash and coconut fibers to normal concrete. Data was collected through laboratory tests by carrying out an additional mixture of stone ash and coconut fibers. There were six types of specimens produced which were measured for 7, 14, 21, and 28 days. Variation of specimens 1) normal concrete, 2) normal concrete + stone ash, 3) normal concrete + coconut fiber (1.5%), 4) normal concrete + stone ash and coconut fiber (1.5%), 5) normal concrete + stone ash and 1% coconut fiber, 6) normal concrete + 1% coconut fiber. From the results of testing the concrete compressive strength was obtained 455 kg/cm2 for the age of concrete for 28 days with a mixture of normal concrete + stone ash.


UKaRsT ◽  
2019 ◽  
Vol 3 (2) ◽  
pp. 1
Author(s):  
Rasio Hepiyanto ◽  
Mohammad Arif Firdaus

Concrete is a composite material (mixture) of several materials, whose main material consists of a mixture of cement, fine aggregates, coarse aggregates, water and or without other additives with certain comparisons. This study uses ingredients added by Abu Bonggol Corn which aims to determine the effect of addition of Corn Bonggol to the compressive strength of concrete with a percentage variation of 0%, 4%, 8%, and 12% of the weight of cement. The concrete value of 28 days of normal concrete (19.96 Mpa) 203.24 (kg / cm2) while with substitution of corn cobs ash 4% (33.04 Mpa) 336.80 (kg / cm2), 8% (30.79 MPa) ) 313.57 (kg / cm2), 12% (28.20 Mpa) 287.44 (kg / cm2). Then it can be concluded that all variants exceeding the desired target, the optimum value of substitution of corncob ash is in the 4% variant which is 33.04 Mpa, 336.80 (kg / cm2).


2020 ◽  
Vol XVII (3) ◽  
pp. 1-14
Author(s):  
Leila Shahryari ◽  
Maryam Nafisinia ◽  
Mohammad Hadi Fattahi

The effects of simultaneous use of recycled aggregates and ground blast furnace slag as a percentage of cement-constituting materials on different properties of fresh self-compacting concrete (SCC) are investigated in this study. To this end, three series of SCC mixtures with a fixed volume of cement paste equalling 380 ltr/m3 (2.36 gal/ft3) and the replacement ratio of coarse aggregates (fifty percent and one hundred percent) and total aggregates (zero percent, fifty percent and one hundred percent) were prepared. The water content ratios in the first, second and third series were 0.4, 0.45, and 0.5, respectively. The results of the compressive strength tests for 7-day, 14-day and 28-day cubic specimens and compressive strength and Brazilian test results for 28-day cylindrical specimens were used as control parameters governing the SCC resistive quality. The results of fresh SCC tests (including slump-flow and T50 tests, V-funnel test, and L-box test) showed that the negative effect of recycled fine aggregates on fresh SCC properties is significantly more than that of recycled coarse aggregate. However, recycled SCC with acceptable properties can be obtained with a slight increase in the amount of superplasticisers used in the presence of slag.


2019 ◽  
Vol 943 ◽  
pp. 105-110 ◽  
Author(s):  
Riana Herlina Lumingkewas ◽  
Akhmad Herman Yuwono ◽  
Sigit Pranowo Hadiwardoyo ◽  
Dani Saparudin

The compressive strength of the concrete reviewed in this study uses nanosilica and coconut fibers. The addition of coconut fibers to concrete contributes to the construction of sustainable and environmentally friendly building materials. The testing method carried out physically and mechanically. Testing the compressive strength of the nanoconcrete composite with variations in the amount of nanosilica which substituted with cement. Using variations of nanosilica composition, namely 0%, 0.5%, 1%, 1.5%, and 2% added with coconut fiber to determine the effect of compressive strength from nanoconcrete composite. The results obtained are the optimal value of concrete compressive strength with nanosilica is the addition of 2% nanosilica, which increases 43% of standard concrete. Moreover, on concrete with the addition of nanosilica and the addition of coconut fibers 1% test results in concrete compressive strength which is optimal in the addition of 0.5% nanosilica, which is 58% increase from normal concrete. The conclusion of this study that the addition of nanosilica and reinforced with coconut fiber will increase the compressive strength of concrete, this is an excellent composite material to get environmentally friendly building materials using.


2018 ◽  
Vol 3 (1) ◽  
pp. 55
Author(s):  
Suhendra Suhendra

Aggregate quality is very influential on the strength of the resulting concrete. Both coarse and fine aggregates have various characteristics identified from laboratory test results. This study aims to examine the use of various aggregates for a quality of concrete. The coarse aggregate and the fine aggregate used are obtained from the nearest location to the work to be performed. The quality of the concrete reviewed is K-125, K-175 and K-225. The coarse aggregates used are 1-2 size (in cm), 2-3 size (in cm) crushed aggregate and coral. The fine aggregates used for each of the coarse aggregates are also different. The results showed that the coral aggregate did not meet the gradations of concrete aggregate. While the fine aggregate does not meet the gradation of concrete aggregate for the three types used. The concrete compressive strength test results show the use of coarse aggregates of 2-3 size of crushed and coarse aggregate of corals giving the average compressive strength value required for all planned concrete strength. While concrete using coarse aggregates of rocks of size 1-2 only meet the specified compressive strength, but does not meet the required compressive strength.Key words: Aggregates, concrete, compressive strength


2020 ◽  
Vol 2 (1) ◽  
pp. 31-57
Author(s):  
Ni Ketut Sri Astati Sukawati

Concrete with various variants is a basic requirement in building a building. The concrete mixture is diverse depending on the planning made beforehand. The cement mixture is usually in the form of a mixture of artificial stone, cement, water and fine aggregates and coarse aggregates. Aggregates (fine aggregates and coarse aggregates) function as fillers in concrete mixtures. (Subakti, A., 1994). However, in building construction, additives are often added, but there is still a sense of uncertainty at the time of dismantling the mold and the reference before the concrete reaches sufficient strength to carry its own weight and the carrying loads acting on it. To overcome the time of carrying out work related to concrete, it is necessary to find an alternative solution, for example by looking for alternative ingredients of concrete mixture on the basis of consideration without reducing the quality of the concrete. From the results of previous studies it was stated that due to the partial replacement of cement with Fly Ash, the strength of the pressure and tensile strength of the concrete had increased (Budhi Saputro, A., 2008). Based on the description above, the author seeks to examine how the compressive strength of concrete characteristics that occur by adding additives Addition H.E in the concrete mixture and is there any additive Additon H.E effect on the increase in the compressive strength characteristic of the concrete. From the results of the study, it was found that the compressive strength of the concrete with the addition of additives HE was that after the compressive strength test of the concrete cube was carried out and the analysis of concrete compressive strength of 10 specimens, in each experiment a cube specimen was made with the addition of additons. HE with a dose of 80 cc, 120 cc, and 200 cc can accelerate and increase the compressive strength of concrete characteristics.


2020 ◽  
Vol 323 ◽  
pp. 01018
Author(s):  
Wei-Ting Lin ◽  
Lukáš Fiala ◽  
An Cheng ◽  
Michaela Petříková

In this study, the different proportions of co-fired fly ash and ground granulated blast-furnace slag were used to fully replace the cement as non-cement blended materials in a fixed water-cement ratio. The recycled fine aggregates were replaced with natural fine aggregates as 10%, 20%, 30%, 40% and 50%. The flowability, compressive strength, water absorption and scanning electron microscope observations were used as the engineered indices by adding different proportions of recycled fine aggregates. The test results indicated that the fluidity cannot be measured normally due to the increase in the proportion of recycled fine aggregates due to its higher absorbability. In the compressive strength test, the compressive strength decreased accordingly as the recycled fine aggregates increased due to the interface structure and the performance of recycled aggregates. The fine aggregates and other blended materials had poor cementation properties, resulting in a tendency for their compressive strength to decrease. However, the compressive strength can be controlled above 35 MPa of the green non-cement blended materials containing 20% recycled aggregates.


Author(s):  
Atif Jawed

Abstract: Pervious concrete is a special type of concrete, which consists of cement, coarse aggregates, water and if required and other cementations materials. As there are no fine aggregates used in the concrete matrix, the void content is more which allows the water to flow through its bodyThe main aim of this project was to improve the compressive strength characteristics of pervious concrete. But it can be noted that with increase in compressive strength the void ratio decreases. Hence, the improvement of strength should not affect the porosity property because it is the property which serves its purpose. In this investigation work the compressive strength of pervious concrete is increased by a maximum of 18.26% for 28 days when 8% fine aggregates were added to standard pervious concrete Keywords: W/C ratio, pervious Concrete, sugarcane bagasse’s ash, rice husk ash compressive strength, fine aggregates


2013 ◽  
Vol 712-715 ◽  
pp. 917-920
Author(s):  
Lian Xi Wang ◽  
Guang Hui Pan ◽  
Fu Yong Li ◽  
Hai Ming Wang ◽  
Guo Zhong Li

Construction garbage paving bricks were made of recycled coarse and fine aggregates which were prepared by the waste concrete. The influence of replacement rate of recycled coarse aggregates, water-binder ratio and excitation agent dosage on the compressive strength and flexural strength of construction garbage paving bricks were researched. The experimental results show that optimum replacement rate of recycled coarse aggregates, water-binder ratio and excitation agent dosage were 100%, 0.43 and 1.5% respectively. In this proportion, the 7d, 28d compressive strength of the products were 15.6MPa, 37.5MPa respectively, and the 7d, 28d flexural strength were 2.0MPa, 4.3MPa respectively, which fit the requirements of the Cc30 level of compressive strength and the Cf4.0 level of flexural strength involved in JCT 446-2000 "concrete pavers".


2019 ◽  
Vol 801 ◽  
pp. 436-441
Author(s):  
Shin Jen Chen ◽  
Chao Shi Chen ◽  
Jyun Yong Jhan ◽  
Ruei Fu Chen

Controlled low-strength materials (CLSM) have begun to apply in a lot of countries because CLSM could distribute randomly in complex sites. Manufacturing from chlor-alkali industry, the brine sludge was used to replace the composition in CLSM for resource application. In this study, the mix composition of brine sludge replaced only the fine aggregates or all of the aggregates. Examining the suitable composition, the ball drop test and the compressive strength test were carried out. The ball drop test was applied to determine the readiness of the CLSM to accept loads prior, and the bearing capacity at different ages were measured by the compressive strength test. The results of the ball drop test in different replacements was 7 - 11.5 cm. The replacement of fine aggregates satisified the rule of CLSM. Replacing all of the aggregates, the mixtures were over 7.6 cm, which meant that the early strength at 1 day were not sufficient. The value of compressive strength at 28 days was 1.709 - 21.37 kgf/cm2, conforming the requirement of CLSM. Overall, the mixture which replaced the fine aggregates met all the specified values of CLSM. In particular, the composition of coarse aggregates reduce to 250 kg/m3, the utalization of the brine sludge could be the most.


Sign in / Sign up

Export Citation Format

Share Document