Effect of Stone Ash Mixture and Coconut Fiber on Concreate Compressive Strenght

2020 ◽  
Vol 6 (4) ◽  
pp. 462-471

Abstract: The composition of the concrete mixture determines the compressive strength. Concrete mixtures generally consist of cement, water, coarse aggregates, fine aggregates, and concrete drugs. In this study, it will be tried to mix stone ash and coconut fibers. The purpose of this study is to find out the concrete compressive strength with add stone ash and coconut fibers to normal concrete. Data was collected through laboratory tests by carrying out an additional mixture of stone ash and coconut fibers. There were six types of specimens produced which were measured for 7, 14, 21, and 28 days. Variation of specimens 1) normal concrete, 2) normal concrete + stone ash, 3) normal concrete + coconut fiber (1.5%), 4) normal concrete + stone ash and coconut fiber (1.5%), 5) normal concrete + stone ash and 1% coconut fiber, 6) normal concrete + 1% coconut fiber. From the results of testing the concrete compressive strength was obtained 455 kg/cm2 for the age of concrete for 28 days with a mixture of normal concrete + stone ash.

UKaRsT ◽  
2019 ◽  
Vol 3 (2) ◽  
pp. 52
Author(s):  
Nur Azizah Affandy ◽  
Agus Imam Bukhori

Concrete is a composite material (mixture) of several materials, whose main material consists of a mixture of cement, fine aggregates, coarse aggregates, water and or without other added ingredients coconut fibers are only used for broom materials, rugs, ropes and household appliances.Therefore, the addition of burning concrete into coconut ash ash is tried.The method used was experimental carried out in the laboratory with the production of 12 test pieces with presentations of 0%, 0.25%, 0.5% and 0.75% at 7 days.Laboratory test results on the addition of coconut fiber ash to the normal K 100 presentation were 16.505 MPa, coconut fiber ash mixture 0.25% reached 23.895 MPa, coconut fiber ash mixture 0.5% reached 23.656 MPa, the highest fiber ash mixture concrete 0.75% coconut can reach compressive strength of 23,688 MPa.


2021 ◽  
Vol 6 (2) ◽  
pp. 96-103
Author(s):  
Ranno Marlany Rachman ◽  
Try Sugiyarto Soeparyanto ◽  
Edward Ngii

This research aimed to utilize Anadara Granosa (Blood clam shell) clamshell waste as a new innovation in concrete technology and to investigate the effect of Anadara Granosa clamshell powder utilization as an aggregate substitution on the concrete compressive strength. The sample size was made of cylinders with a size of 10 cm x 20 cm with variations of clamshell powder 10%, 20% and 30% from the fine aggregate volume then soaked for 28 days as per the method of the Indonesian National Standard. The evaluation results exhibited that the slump value exceeded the slump value of normal concrete with a slump value of 0% = 160 mm, 10% = 165 mm, 20% = 180 mm and 30% = 180 mm. Additionally, it was found that the concrete compressive strength obtained post 28 days were 20.78 Mpa, 21.95 Mpa, 21.17 Mpa and 24.28 Mpa for normal concrete (0%), substitution concrete (10%), substitution concrete (20%) and substitution concrete (30%), respectively. Leading on from these results, it was concluded that the increment of Anadara Granosa clamshell powder substitution led to the increase of concrete compressive strength test.


Author(s):  
Sri Hartati Dewi ◽  
Roza Mildawati ◽  
Tio Perdana

Concrete is a very important building material used in the world of construction services, and it is generally known that the good and bad properties of concrete can be seen from its compressive strength. Concrete consists of Portland Cement (PC) or other hydraulic cement, fine aggregates, coarse aggregates, and water, with or without using additional materials. Cement is one of the main mixtures of concrete constituents composed of natural resources such as lime (CaO), Silica (SiO₃), alumina (Al2O₃), little magnesia (MgO), and alkali. Silica is also found in corn. according to (Roesmarkam and Yuwono, 2002) corn plants have a Silica content of 20.6%. This study aims to determine the effect of utilization of corn stalk ash on compressive strength and modulus of elasticity of concrete. Cornstalk ash is used as a partial substitute for cement, with a mixture composition of 2%, 4%, 6%, 8%, and 10%. This study uses SNI 03-2834-2000 for mix design, with the added ingredient of 0.25% sikament NN. Cylindrical test specimen size (150 mm x 300 mm), the specimen was treated and tested at 28 days. Based on research using corn stalk ash 2%, 4%, 6%, 8%, and 10%. either without or using sikament NN the highest compressive strength at 8% is 20.8 Mpa and 20.4 Mpa, and decrease in usage of 10% corn stalk ash which is 18.2 Mpa and 18, 4 Mpa. The highest elastic modulus without or with sikament NN present in 8% ie 21656.14 Mpa and 21607.52 MPa. Modulus of Elasticity value decreased in the use of corn stalks 10% ash is 20366.28 Mpa and 20569.59 MPa. Based on the research, corn stalk ash can replace the role of part of cement in construction using corn stalk ash 8%.


2018 ◽  
Vol 18 (1) ◽  
pp. 49-58
Author(s):  
Roza Mildawati

[ID] Concrete is a very popular building material used in the world of construction services, consisting of a mixture of Portland Cement (PC) or other hydraulic cement, fine aggregates, coarse aggregates and water, with or without using additional materials. The quality of materials such as cement also greatly affects the strength of the concrete after hardening, so the selection of cement quality must be in accordance with the concrete planning regulations in order to obtain optimal results. In Indonesia there are many new cement factories that produce to meet the needs of the community, one of which is the Conch brand cement. So in connection with the above, Conch cement can be examined to compare the value of compressive strength and flexural strength with old cement, namely cement Padang, Tiga Roda, Holcim and Bosowa which are generally always used in concrete planning at this time.The purpose of this study was to determine the comparison of compressive strength and flexural strength of the concrete and the multiplier between cement Padang, Three Wheels and Conch at 28 days of age. In this study using the method SNI 03-2834-2000. With cylindrical test specimens (150 mm x 300 mm) and size beams (150 mm x 150 mm x 600 mm) three specimens were made for each cement.The maximum concrete compressive strength is found in Padang cement with a compressive strength of 45.86 Mpa, for the minimum compressive strength found in Tiga Roda cement with compressive strength value of 40.19 Mpa and for the compressive strength of cement Conch there is a second with compressive strength value 42.84 Mpa. From the explanation above, the results of 28 days of concrete compressive strength with each cement brand still not reached the planned concrete compressive strength of 38 MPa. The maximum concrete flexural strength is found in Padang cement with a flexural strength value of 5.03 Mpa, for a minimum flexural strength value found in Tiga Roda cement with a flexural strength value of 3.96 Mpa and for the value of Conch cement compressive strength there is a second with flexural strength 4.43 Mpa. From the explanation above, the results of 28 days of concrete flexural strength with each cement brand that has not reached the 4.4 Mpa plan, namely the three-wheeled cement brand. [EN] Concrete is a very popular building material used in the world of construction services, consisting of a mixture of Portland Cement (PC) or other hydraulic cement, fine aggregates, coarse aggregates and water, with or without using additional materials. The quality of materials such as cement also greatly affects the strength of the concrete after hardening, so the selection of cement quality must be in accordance with the concrete planning regulations in order to obtain optimal results. In Indonesia there are many new cement factories that produce to meet the needs of the community, one of which is the Conch brand cement. So in connection with the above, Conch cement can be examined to compare the value of compressive strength and flexural strength with old cement, namely cement Padang, Tiga Roda, Holcim and Bosowa which are generally always used in concrete planning at this time.The purpose of this study was to determine the comparison of compressive strength and flexural strength of the concrete and the multiplier between cement Padang, Three Wheels and Conch at 28 days of age. In this study using the method SNI 03-2834-2000. With cylindrical test specimens (150 mm x 300 mm) and size beams (150 mm x 150 mm x 600 mm) three specimens were made for each cement.The maximum concrete compressive strength is found in Padang cement with a compressive strength of 45.86 Mpa, for the minimum compressive strength found in Tiga Roda cement with compressive strength value of 40.19 Mpa and for the compressive strength of cement Conch there is a second with compressive strength value 42.84 Mpa. From the explanation above, the results of 28 days of concrete compressive strength with each cement brand still not reached the planned concrete compressive strength of 38 MPa. The maximum concrete flexural strength is found in Padang cement with a flexural strength value of 5.03 Mpa, for a minimum flexural strength value found in Tiga Roda cement with a flexural strength value of 3.96 Mpa and for the value of Conch cement compressive strength there is a second with flexural strength 4.43 Mpa. From the explanation above, the results of 28 days of concrete flexural strength with each cement brand that has not reached the 4.4 Mpa plan, namely the three-wheeled cement brand.


2021 ◽  
Vol 2 (1) ◽  
pp. 29-36
Author(s):  
Muhammad Muhsar ◽  
Abdul Kadir ◽  
Sulaiman Sulaiman

The purpose of this study was to Analyze the characteristics of theaggregates used in concrete mixtures and analyze how muchincrease in compressive strength of concrete with a variation ofnickel slag substitution 0%, 5%, 15%, 25% compared with normalconcrete. The characteristics of the material examined are watercontent, sludge content, specific gravity and absorption, volumeweight, abrasion with los angeles machines, and filter analysis.While the large increase in compressive strength of concrete can betested at the age of 7 days, 14 days, 28 days and 35 days. From the results of the analysis of the characteristics of nickel slagwaste in concrete mixes meet the test standards in concretemixtures, with a moisture content of 0.86%, sludge content of 0.44%,specific gravity of 2.94 gr / cm3, volume weight of 1.76 gr / cm3,abrasion 36.07%. And a large increase in compressive strength ofconcrete with a variation of nickel slag substitution of 0%, 5%, 15%,25% compared to normal concrete is increasing. The highestpercentage increase in concrete compressive strength is found inconcrete compressive strength between a variation of 15% with avariation of 25% at 14 days concrete age, with a percentage increasein value of 13.13%.


2018 ◽  
Vol 20 (2) ◽  
pp. 65-70
Author(s):  
Endah Kanti Pangestuti ◽  
Sri Handayani ◽  
Mego Purnomo ◽  
Desi Christine Silitonga ◽  
M. Hilmy Fathoni

Abstract. The use of coal waste (Fly Ash) is currently being developed in building materials technology, as a high-strength concrete mix material. This study aims to determine the strength of concrete by adding fly ash as a substitute for cement in high-strength concrete mixtures. This research was conducted with an experimental method to obtain results and data that would confirm the variables studied. The total number of specimens used in this study were 36 pieces with different sizes of cube tests which were 15 cm x 15 cm x 15 cm. A total of 36 concrete samples were used to test the compressive strength of concrete with a percentage of Fly Ash in  0% (normal concrete), 20%, 25% and 30% with a concrete treatment age of 7 days, 21 days and 28 days. A total of 12 more samples were used to test water absorption in concrete at 28 days of maintenance. Each percentage percentage of Fly Ash uses 3 concrete test samples. The increase in compressive strength occurs at 7, 21 and 28 days in concrete. However, the compressive strength of concrete produced by concrete using the percentage of Fly Ash is always lower than the value of normal concrete compressive strength. From testing the compressive strength of concrete at 28 days of treatment with content of 0%, 20%, 25% and 30% Fly Ash obtained results of 45.87 MPa, 42.67 MPa, 40.89 MPa, and 35.27 MPa respectively


Author(s):  
Sunir Hassan ◽  
C. Lakshmana Rao ◽  
K. Ganesh Babu

Fiber reinforced concrete has been identified as a particulate composite consisting of hardened cement paste, fine aggregates, coarse aggregates, particulate fibers etc. and each constituent plays a significant role in the combined quasi brittle behaviour of the material. From the view point of a numerical modeler, a two phase model consisting of a matrix phase and a coarse aggregate phase is simple and sufficient enough to take care of the heterogeneity without affecting the capability of the model to predict the material behaviour as reported by Ghouse et al [1]. Thus the unit cell under consideration is modeled as a square with an inner circle (Fig. 1), the square representing the total volume fraction of combined properties of cement paste, fine aggregates, particulate fibers and water. The inner circle represents the total volume fraction of coarse aggregates in the material. This representative volume fraction is assigned with periodic boundary conditions to ensure uniformity in deformation and to avoid any discontinuities in the material once the unit cell has been repeatedly arranged to build up the macro sized material and has undergone deformation in elastic range. Ghouse et al [1] could identify only slight variations in the compressive strength of normal low strength concrete with varying aggregate volume fractions. A comparatively decreasing trend in compressive strength has also been observed initially when glass fiber reinforced high strength cement composite (GFRCC) was analyzed by Sunir et al [2]. Investigations proceed in the direction of predicting the material behaviour by replacing the glass fiber and its volume fraction with polypropylene fibers considered by Pavan [3] as being significant in improving the mechanical characteristics of the macro composite under consideration. An analysis of polymer fiber reinforced high strength concrete (PFRC) with similarly varying aggregate volume fractions could predict significantly decreasing trends in compressive strength for lower volume fractions. In future, the ease with which the unit cell approach predicts the behaviour of fiber reinforced plain mortar is also to be investigated in a similar manner.


2019 ◽  
Vol 943 ◽  
pp. 105-110 ◽  
Author(s):  
Riana Herlina Lumingkewas ◽  
Akhmad Herman Yuwono ◽  
Sigit Pranowo Hadiwardoyo ◽  
Dani Saparudin

The compressive strength of the concrete reviewed in this study uses nanosilica and coconut fibers. The addition of coconut fibers to concrete contributes to the construction of sustainable and environmentally friendly building materials. The testing method carried out physically and mechanically. Testing the compressive strength of the nanoconcrete composite with variations in the amount of nanosilica which substituted with cement. Using variations of nanosilica composition, namely 0%, 0.5%, 1%, 1.5%, and 2% added with coconut fiber to determine the effect of compressive strength from nanoconcrete composite. The results obtained are the optimal value of concrete compressive strength with nanosilica is the addition of 2% nanosilica, which increases 43% of standard concrete. Moreover, on concrete with the addition of nanosilica and the addition of coconut fibers 1% test results in concrete compressive strength which is optimal in the addition of 0.5% nanosilica, which is 58% increase from normal concrete. The conclusion of this study that the addition of nanosilica and reinforced with coconut fiber will increase the compressive strength of concrete, this is an excellent composite material to get environmentally friendly building materials using.


2018 ◽  
Vol 3 (1) ◽  
pp. 55
Author(s):  
Suhendra Suhendra

Aggregate quality is very influential on the strength of the resulting concrete. Both coarse and fine aggregates have various characteristics identified from laboratory test results. This study aims to examine the use of various aggregates for a quality of concrete. The coarse aggregate and the fine aggregate used are obtained from the nearest location to the work to be performed. The quality of the concrete reviewed is K-125, K-175 and K-225. The coarse aggregates used are 1-2 size (in cm), 2-3 size (in cm) crushed aggregate and coral. The fine aggregates used for each of the coarse aggregates are also different. The results showed that the coral aggregate did not meet the gradations of concrete aggregate. While the fine aggregate does not meet the gradation of concrete aggregate for the three types used. The concrete compressive strength test results show the use of coarse aggregates of 2-3 size of crushed and coarse aggregate of corals giving the average compressive strength value required for all planned concrete strength. While concrete using coarse aggregates of rocks of size 1-2 only meet the specified compressive strength, but does not meet the required compressive strength.Key words: Aggregates, concrete, compressive strength


2020 ◽  
Vol 8 (1) ◽  
pp. 36-41
Author(s):  
Whendy Trissan ◽  
Yongki Pratomo

In general, concrete fillers are made from materials that are easily obtained, easily processed, and have the durability and strength that is very much needed in particular construction of coarse and fine aggregates, each region would have different aggregates as the main ingredients in making concrete. The research conducted aims to determine how the optimum compressive strength value of the concrete produced from the addition of Kapuas Sand to the concrete mixture. In this research, Kapuas Sand is used as a fine aggregate enhancer. The percentage variation of Kapuas red sand used in this study varies, namely 0%, 25%, 50%, 75%, and 100%. Concrete mixture planning using SNI 03-2834-2000. The test uses cylindrical specimens with a height of 30 cm, a diameter of 15 cm with a total sample of 10 cylinders for each addition of Kapuas Sand so that the total specimens are 50 cylinders. Testing is carried out at the age of 14 and 28 days in the Laboratory of Building Engineering Education Study Program, Faculty of Teacher Training and Education, University of Palangka Raya. The results of the compressive strength of concrete using a mixture of Kapuas Sand at 28 days 0% 25%, 50%, 75% and, 100% respectively were 24.71 MPa, 21.79 MPa, 25.36 MPa, 23 .3 MPa, and .22.62 MPa. This result shows the compressive strength value of concrete in the concrete mix with a percentage of 50% that is equal to 25.36 MPa while the compressive strength of normal concrete is 24.71 MPa so that the compressive strength of concrete is 2.66% of normal concrete compressive strength with age concrete compressive strength 28 days.


Sign in / Sign up

Export Citation Format

Share Document