scholarly journals Experimental Study on Strength of Pervious Concrete by Using Fine Aggregate

Author(s):  
Atif Jawed

Abstract: Pervious concrete is a special type of concrete, which consists of cement, coarse aggregates, water and if required and other cementations materials. As there are no fine aggregates used in the concrete matrix, the void content is more which allows the water to flow through its bodyThe main aim of this project was to improve the compressive strength characteristics of pervious concrete. But it can be noted that with increase in compressive strength the void ratio decreases. Hence, the improvement of strength should not affect the porosity property because it is the property which serves its purpose. In this investigation work the compressive strength of pervious concrete is increased by a maximum of 18.26% for 28 days when 8% fine aggregates were added to standard pervious concrete Keywords: W/C ratio, pervious Concrete, sugarcane bagasse’s ash, rice husk ash compressive strength, fine aggregates

2019 ◽  
Vol 8 (2S8) ◽  
pp. 1004-1007

Pervious Concrete which is also called as Noamercement Concrete is a combination of cement, water and a particular size of coarse aggregate combines to form a porous structural material. The main application of pervious concrete in pavements is for storm water control which occurs mostly in urban areas where scarcity of land is high. Permeable Pavement allows surface runoff through it and hence stops the overflow which improves ground water recharge. In this paper investigation on compressive strength, flexural strength, water permeability, density and void ratio has carried at 0.33% water cement ratio(W/C) for cement aggregate ratio (C/A)0.25 to three set of coarse aggregate(CA)sizes without fine aggregate . Summarizing that 12.5 mm (passing) to 10 mm (retained) size of aggregates has shown good results than remaining sizes for compressive strength, permeability, density and void content. Pervious cement concrete mix.


2019 ◽  
Vol 801 ◽  
pp. 391-396
Author(s):  
Janardhan Prashanth ◽  
Harish Narayana ◽  
Ramji Prasad

In this paper comparative study on the compressive strength and permeability of pervious concrete with and without fine aggregate is done. Sand and LLDPE (Linear low density polythene) with varying percentages are used as fine aggregates. Sand is added in percentages of 5%, 10% and 15% of the coarse aggregate in all the mixes. LLDPE powder is added in the percentage of 5%, 10% and 15% of the coarse aggregate in all the mixes. With the addition of fine aggregate the compressive strength of the pervious concrete increases but permeability reduces. The results show that the pervious concrete with LLDPE powder there is a considerable increase in compressive strength as compared to no-fines mix and mix with sand as fine aggregate. The study recommends the use of eco-friendly pervious concrete with LLDPE powder as an alternative to the existing pavements with low volume traffic.


2016 ◽  
Vol 847 ◽  
pp. 437-444 ◽  
Author(s):  
Ying Liang Tian ◽  
Wen Cai Liu ◽  
Su Ping Cui ◽  
Shi Bing Sun ◽  
Yi Wang ◽  
...  

In recent decades, high-tech electrical equipment has drastically proliferated instead of Cathode Ray Tube (CRT), making CRT funnel glass potential hazardous solid waste. Due to a relatively high level of lead, CRT funnel glass could be used as a potential material for the production of anti-radioactive concrete. In our study the CRT funnel glass , which was separated as aggregate in the concrete, was reduced to 4.75-25 mm (coarse aggregates) and less 4.75 mm (fine aggregates) in the production of anti-radioactive concrete. Mixes containing 0%, 20%, 40% , 60%, 80% and 100% (volume percentage) of CRT funnel glass to replace fine aggregate and coarse aggregate (respectively or simultaneously)) were prepared. The influence of the size, shape and replacement percentage of aggregates on workability, compressive strength and radiation shielding performance were determined. It was found that the replacement of natural aggregate with recycled CRT glass considerably improved the slump and radiation shielding performance but reduced compressive strength. The optimum percentage of waste funnel glass used as fine aggregate and coarse aggregate was 40%. The results clearly showed that the CRT funnel glass performed a significant enhancement in radiation shielding properties.


2021 ◽  
Vol 1 (1) ◽  
pp. 1
Author(s):  
Agung Prayogi

Abstract Concrete is the most widely used material throughout the world and innovations continue to be carried out to produce efficient development. Shell charcoal ash and rice husk ash are industrial by-products which have the potential to replace sand for concrete mix, especially in Indragiri Hilir. The research with the title "Effect of Mixture of Rice Husk Ash and Shell Ash Ashes as Substitute for Some Fine Aggregates Against Concrete Compressive Strength" aims to prove the effect of a mixture of shell charcoal ash and husk ash to replace some of the sand to produce maximum compressive strength. Concrete is a mixture of Portland cement, fine aggregate, coarse aggregate, and water. This research uses 5 variations of the mixture to the weight of sand, BSA 0 without a substitute mixture, BSA 1 with a mixture of 5% husk ash and 10% shell charcoal, BSA 2 with a mixture of 5% husk ash and 15% charcoal ash, BSA 3 with a mixture of 5% husk ash and 18% charcoal, BSA 4 with a mixture of 10% husk and 10% charcoal, and BSA 5 with a mixture of 13% husk ash and 10% charcoal ash. SNI method is used for the Job Mix Formula (JMF) mixture in this research. The results of the average compressive strength of concrete at 28 days for JMF of 21.05 MPa, BSA 1 of 23.68 MPa, BSA 2 of 22.23 MPa, BSA 3 of 14.39 MPa, BSA 4 of 13.34 MPa , and BSA 5 of 20.14 MPa. The conclusion drawn from the results of the BSA 1 research with a mixture of 5% husk ash and 15% charcoal ash produced the highest average compressive strength of 23.68 MPa. Abstrak Beton merupakan material paling banyak digunakan diseluruh dunia dan terus dilakukan inovasi untuk menghasilkan pembangunan yang efisien. Abu arang tempurung dan abu sekam padi merupakan hasil sampingan industri yang berpotensi sebagai pengganti pasir untuk campuran beton, khususnya di Indragiri Hilir. Penelitian dengan judul “Pengaruh Campuran Abu Sekam Padi dan Abu Arang Tempurung Sebagai Pengganti Sebagian Agregat Halus Terhadap Kuat Tekan Beton” ini bertujuan membuktikan adanya pengaruh campuran abu arang tempurung dan abu sekam untuk mengganti sebagian pasir hingga menghasilkan kuat tekan maksimum. Beton adalah campuran antara semen portland, agregat halus, agregat kasar, dan air. Penelitian ini menggunakan 5 variasi campuran terhadap berat pasir, BSA 0 tanpa campuran pengganti, BSA 1 dengan campuran 5 % abu sekam dan 10% arang tempurung, BSA 2 dengan campuran 5% abu sekam dan 15% abu arang, BSA 3 dengan campuran 5% abu sekam dan 18% arang, BSA 4 dengan campuran 10% sekam dan 10% arang, dan BSA 5 dengan campuran 13% abu sekam dan 10% abu arang. Metode SNI digunakan untuk campuran Job Mix Formula (JMF)  pada penelitian ini. Hasil rata-rata kuat tekan beton pada umur 28 hari untuk JMF sebesar 21,05 MPa, BSA 1 sebesar 23,68 MPa, BSA 2 sebesar 22,23 MPa, BSA 3 sebesar 14,39 MPa, BSA 4 sebesar 13,34 MPa, dan BSA 5 Sebesar 20,14 MPa. Ditarik kesimpulan dari hasil penelitian BSA 1 dengan campuran 5% abu sekam dan 15% abu arang menghasilkan rata-rata kuat tekan tertinggi yaitu sebesar 23,68 MPa.  


Author(s):  
Suwendy Arifin Et.al

Pervious concrete or non-fine concrete is a simple form of lightweight concrete made by eliminating the use of fine aggregates. As a result of not using fine aggregate in pervious concrete, then created a cavity filled with air and water can be passed. This cavity resulted in reduced density of the concrete as well as the reduced amount of area that needs to be covered by cement paste, thereby reducing the compressive strength. To increase the compressive strength of pervious concrete, in this study will utilize waste material. The waste material is the cocnut shell ash and coconut shell to strengthen the coarse aggregate bonds, so it is expected to increase the compressive strength along with the increase in permeability. Thus, in this study will replace part of the coarse aggregate with coconut shell with percentage 0%, 2,5%, 5%, 7,5%, 10% and partially replace cement with coconut shell ash with percentage 0%, 2,5%, 5%, 7,5%


2018 ◽  
Vol 917 ◽  
pp. 297-302
Author(s):  
Jul Endawati ◽  
R. Utami ◽  
Rochaeti

Fly ash as a pozzolanic waste material can be utilized to substitute part of Portland cement in concrete mixture. The concrete paving industry utilizes the fly ash up to 50% (by weight) of the total binder. This study aims to obtain the characteristics of fly ash applications for pervious concrete. The composition of the binder developed based on the optimal proportion of fly ash from the previous study and the maximum of fly ash percentage used by the local paving industry in general. Other mix variations were made of the same binder composition with the addition of 6% of fine aggregates. The compressive strength of pervious concrete which binder composed of 63% portland cemet composite-25% fly ash-12% silica fume gained at 28 days, was not much different from the compressive strength of the pervious concrete without fine aggregate and with the binder composition of 50% FA-50% PCC and 0% SF. The value of the compressive strength test of the pervious concrete without fine aggregate is still within the range of compressive strength values ​​according to the ACI 522 R-10. The permeability rate of the pervious concrete is in the range of permeability research result of Chopra, 2013 (0.97 ÷ 1.90 cm/sec), but still higher compared to permeability rate gained by Dewoolkar, 2009 (0.83 ÷ 0.98 cm/sec).


2018 ◽  
Vol 3 (1) ◽  
pp. 55
Author(s):  
Suhendra Suhendra

Aggregate quality is very influential on the strength of the resulting concrete. Both coarse and fine aggregates have various characteristics identified from laboratory test results. This study aims to examine the use of various aggregates for a quality of concrete. The coarse aggregate and the fine aggregate used are obtained from the nearest location to the work to be performed. The quality of the concrete reviewed is K-125, K-175 and K-225. The coarse aggregates used are 1-2 size (in cm), 2-3 size (in cm) crushed aggregate and coral. The fine aggregates used for each of the coarse aggregates are also different. The results showed that the coral aggregate did not meet the gradations of concrete aggregate. While the fine aggregate does not meet the gradation of concrete aggregate for the three types used. The concrete compressive strength test results show the use of coarse aggregates of 2-3 size of crushed and coarse aggregate of corals giving the average compressive strength value required for all planned concrete strength. While concrete using coarse aggregates of rocks of size 1-2 only meet the specified compressive strength, but does not meet the required compressive strength.Key words: Aggregates, concrete, compressive strength


Author(s):  
Muhammad Juldin ◽  
Akbar Alfa

AbstractConcrete is a composite material (mixture) consisting of cement, coarse aggregates, fine aggregates and water. The concrete formation mixture is designed in such a way as to produce fresh concrete that is easy to work with and meets the plan's compressive strength after hardening.The cement used is PCC type cement, although the composition of cement in concrete is only about 10%, but the role of cement is very important in concrete. Aggregates are mineral granules originating from nature or artificial which have a function as a mixture of fillers in concrete. The aggregate of the concrete mixture filler is divided into fine aggregates used from Javanese Inhu and coarse aggregates from Tanjung Balai Karimun. The fine aggregate is usually in the form of sand that passes through a filter with a diameter of 4.75 mm or 5 mm, while coarse aggregates do not pass through the filter. The water used is well water from Kateman District, Keritang District and Tembilahan District, Indragiri Hilir Regency, Riau Province.The compressive strength of concrete is the amount of load per unit area which causes the concrete specimen to break and there is no more carrying capacity. The average compressive strength of 28 days of cube specimens with well water in Kateman District = 491 kg / cm2, Keritang District = 469 kg / cm2 and Tembilahan District City = 475 kg / cm2.   AbstrakBeton merupakan bahan komposit (campuran) yang terdiri dari semen, agregat kasar, agregat halus dan air. Campuran bahan-bahan pembentukan beton dirancang sedemikian rupa, sehingga menghasilkan beton segar  yang mudah  dikerjakan  dan  memenuhi  kekuatan  tekan  rencana  setelah mengeras.Semen yang digunakan adalah semen tipe PCC, walaupun komposisi semen dalam beton hanya sekitar 10%, namun peran semen sangat penting dalam beton. Agregat adalah butiran mineral yang berasal dari alam atau buatan yang memiliki fungsi sebagai bahan pengisi campuran pada beton. Agregat pengisi campuran beton terbagi atas agregat halus yang digunakan berasal dari Japura Inhu dan agregat kasar berasal dari Tanjung Balai Karimun. Agregat halus biasanya berupa pasir yang lolos saringan dengan diameter 4,75 mm atau 5 mm, sedangkan agregat kasar tidak lolos saringan tersebut. Air yang digunakan yakni air sumur berasal dari Kecamatan Kateman, Kecamatan Keritang dan Kecamatan Tembilahan Kota Kabupaten Indragiri Hilir Provinsi Riau.Kuat tekan beton adalah besarnya beban per satuan luas yang menyebabkan benda uji beton pecah dan tidak ada lagi daya dukungnya. Hasil kuat tekan rata-rata umur 28 hari benda uji kubus dengan air sumur Kecamatan Kateman = 491 kg/ cm2, Kecamatan Keritang = 469 kg/cm2dan Kecamatan Tembilahan Kota = 475 kg/cm2.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2670
Author(s):  
Longxin Gao ◽  
Yong Lai ◽  
Mohammad Rashadul Islam Pramanic ◽  
Wuman Zhang

The deterioration of Portland cement pervious concrete (PCPC) subjected to wet-dry cycles in the simulated acid rain solution was investigated; 4% silica fume (SF) and 8% fine aggregate (FAG) were used to replace part of cement and the coarse aggregates (weight by weight), respectively. The wear resistance, the compressive, and flexural strength of PCPC were measured. The results show that after 12 wet-dry cycles in acid rain solution the compressive strength and the flexural strength of control PCPC are decreased by 30.7% and 40.8%. The final compressive strength of PCPC with 4% SF and PCPC with 8% FAG is increased by 6.9% and 30.3%, and the final flexural strength is increased by 25.4% and 72.3%, respectively. The wear loss of PCPC is decreased by 58.8% and 81.9% when 4% SF and 8% FAG is added to PCPC, respectively. The microstructures of PCPC with wet-dry cycles are also discussed.


2021 ◽  
Vol 6 (2) ◽  
pp. 96-103
Author(s):  
Ranno Marlany Rachman ◽  
Try Sugiyarto Soeparyanto ◽  
Edward Ngii

This research aimed to utilize Anadara Granosa (Blood clam shell) clamshell waste as a new innovation in concrete technology and to investigate the effect of Anadara Granosa clamshell powder utilization as an aggregate substitution on the concrete compressive strength. The sample size was made of cylinders with a size of 10 cm x 20 cm with variations of clamshell powder 10%, 20% and 30% from the fine aggregate volume then soaked for 28 days as per the method of the Indonesian National Standard. The evaluation results exhibited that the slump value exceeded the slump value of normal concrete with a slump value of 0% = 160 mm, 10% = 165 mm, 20% = 180 mm and 30% = 180 mm. Additionally, it was found that the concrete compressive strength obtained post 28 days were 20.78 Mpa, 21.95 Mpa, 21.17 Mpa and 24.28 Mpa for normal concrete (0%), substitution concrete (10%), substitution concrete (20%) and substitution concrete (30%), respectively. Leading on from these results, it was concluded that the increment of Anadara Granosa clamshell powder substitution led to the increase of concrete compressive strength test.


Sign in / Sign up

Export Citation Format

Share Document