scholarly journals Penerapan Deep Learning dalam Pendeteksian Autism Toddler

Author(s):  
Diah Ayu Ambarsari ◽  
Ridan Nurfalah ◽  
Sandra Jamu Kuryanti

Health is a very important thing. Everyone can overcome health problems. Children's health is the dream of every parent. During the growth period the child will switch several times which can stop their development. Parents must be more sensitive and have extensive knowledge in health. The problem that often occurs is that parents do not know the initial autism symptoms that occur in the baby, so more parents assume if it is okay, this situation accelerates the diagnosis process, whereas autism disorders can be detected early by looking at growing habits child development every time an autism transfer is a developmental development in children, autism must facilitate quickly, because with autism treatment quickly and quickly will help autistic patients grow back to normal. To help understand the children mengamalim autism, the authors conducted research with new methods. In a previous study, Fades Tahbatan conducted research to ascertain whether the child was autistic or not using a tool. But it only produces data sets., It turns out to have attributes that are not yet precise, which increases the level of accuracy. In this research, use the method of deep learning and improve accuracy, the application used is fast miners. The variables are then processed so as to produce a prediction model from the data set obtained. Accuracy values that can be processed are sufficient while accuracy = 98.96% precision = 96.74%, recall = 98.49% with AUC of = 0.90 Keywords: Autism, deep learning, toddlers  

Author(s):  
Kyungkoo Jun

Background & Objective: This paper proposes a Fourier transform inspired method to classify human activities from time series sensor data. Methods: Our method begins by decomposing 1D input signal into 2D patterns, which is motivated by the Fourier conversion. The decomposition is helped by Long Short-Term Memory (LSTM) which captures the temporal dependency from the signal and then produces encoded sequences. The sequences, once arranged into the 2D array, can represent the fingerprints of the signals. The benefit of such transformation is that we can exploit the recent advances of the deep learning models for the image classification such as Convolutional Neural Network (CNN). Results: The proposed model, as a result, is the combination of LSTM and CNN. We evaluate the model over two data sets. For the first data set, which is more standardized than the other, our model outperforms previous works or at least equal. In the case of the second data set, we devise the schemes to generate training and testing data by changing the parameters of the window size, the sliding size, and the labeling scheme. Conclusion: The evaluation results show that the accuracy is over 95% for some cases. We also analyze the effect of the parameters on the performance.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yahya Albalawi ◽  
Jim Buckley ◽  
Nikola S. Nikolov

AbstractThis paper presents a comprehensive evaluation of data pre-processing and word embedding techniques in the context of Arabic document classification in the domain of health-related communication on social media. We evaluate 26 text pre-processings applied to Arabic tweets within the process of training a classifier to identify health-related tweets. For this task we use the (traditional) machine learning classifiers KNN, SVM, Multinomial NB and Logistic Regression. Furthermore, we report experimental results with the deep learning architectures BLSTM and CNN for the same text classification problem. Since word embeddings are more typically used as the input layer in deep networks, in the deep learning experiments we evaluate several state-of-the-art pre-trained word embeddings with the same text pre-processing applied. To achieve these goals, we use two data sets: one for both training and testing, and another for testing the generality of our models only. Our results point to the conclusion that only four out of the 26 pre-processings improve the classification accuracy significantly. For the first data set of Arabic tweets, we found that Mazajak CBOW pre-trained word embeddings as the input to a BLSTM deep network led to the most accurate classifier with F1 score of 89.7%. For the second data set, Mazajak Skip-Gram pre-trained word embeddings as the input to BLSTM led to the most accurate model with F1 score of 75.2% and accuracy of 90.7% compared to F1 score of 90.8% achieved by Mazajak CBOW for the same architecture but with lower accuracy of 70.89%. Our results also show that the performance of the best of the traditional classifier we trained is comparable to the deep learning methods on the first dataset, but significantly worse on the second dataset.


Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 12
Author(s):  
Jose M. Castillo T. ◽  
Muhammad Arif ◽  
Martijn P. A. Starmans ◽  
Wiro J. Niessen ◽  
Chris H. Bangma ◽  
...  

The computer-aided analysis of prostate multiparametric MRI (mpMRI) could improve significant-prostate-cancer (PCa) detection. Various deep-learning- and radiomics-based methods for significant-PCa segmentation or classification have been reported in the literature. To be able to assess the generalizability of the performance of these methods, using various external data sets is crucial. While both deep-learning and radiomics approaches have been compared based on the same data set of one center, the comparison of the performances of both approaches on various data sets from different centers and different scanners is lacking. The goal of this study was to compare the performance of a deep-learning model with the performance of a radiomics model for the significant-PCa diagnosis of the cohorts of various patients. We included the data from two consecutive patient cohorts from our own center (n = 371 patients), and two external sets of which one was a publicly available patient cohort (n = 195 patients) and the other contained data from patients from two hospitals (n = 79 patients). Using multiparametric MRI (mpMRI), the radiologist tumor delineations and pathology reports were collected for all patients. During training, one of our patient cohorts (n = 271 patients) was used for both the deep-learning- and radiomics-model development, and the three remaining cohorts (n = 374 patients) were kept as unseen test sets. The performances of the models were assessed in terms of their area under the receiver-operating-characteristic curve (AUC). Whereas the internal cross-validation showed a higher AUC for the deep-learning approach, the radiomics model obtained AUCs of 0.88, 0.91 and 0.65 on the independent test sets compared to AUCs of 0.70, 0.73 and 0.44 for the deep-learning model. Our radiomics model that was based on delineated regions resulted in a more accurate tool for significant-PCa classification in the three unseen test sets when compared to a fully automated deep-learning model.


2020 ◽  
Author(s):  
Tianyu Xu ◽  
Yongchuan Yu ◽  
Jianzhuo Yan ◽  
Hongxia Xu

Abstract Due to the problems of unbalanced data sets and distribution differences in long-term rainfall prediction, the current rainfall prediction model had poor generalization performance and could not achieve good prediction results in real scenarios. This study uses multiple atmospheric parameters (such as temperature, humidity, atmospheric pressure, etc.) to establish a TabNet-LightGbm rainfall probability prediction model. This research uses feature engineering (such as generating descriptive statistical features, feature fusion) to improve model accuracy, Borderline Smote algorithm to improve data set imbalance, and confrontation verification to improve distribution differences. The experiment uses 5 years of precipitation data from 26 stations in the Beijing-Tianjin-Hebei region of China to verify the proposed rainfall prediction model. The test set is to predict the rainfall of each station in one month. The experimental results shows that the model has good performance with AUC larger than 92%. The method proposed in this study further improves the accuracy of rainfall prediction, and provides a reference for data mining tasks.


BMJ Open ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. e026759 ◽  
Author(s):  
John T Y Soong ◽  
Jurgita Kaubryte ◽  
Danny Liew ◽  
Carol Jane Peden ◽  
Alex Bottle ◽  
...  

ObjectivesThis study aimed to examine the prevalence of frailty coding within the Dr Foster Global Comparators (GC) international database. We then aimed to develop and validate a risk prediction model, based on frailty syndromes, for key outcomes using the GC data set.DesignA retrospective cohort analysis of data from patients over 75 years of age from the GC international administrative data. A risk prediction model was developed from the initial analysis based on seven frailty syndrome groups and their relationship to outcome metrics. A weighting was then created for each syndrome group and summated to create the Dr Foster Global Frailty Score. Performance of the score for predictive capacity was compared with an established prognostic comorbidity model (Elixhauser) and tested on another administrative database Hospital Episode Statistics (2011-2015), for external validation.Setting34 hospitals from nine countries across Europe, Australia, the UK and USA.ResultsOf 6.7 million patient records in the GC database, 1.4 million (20%) were from patients aged 75 years or more. There was marked variation in coding of frailty syndromes between countries and hospitals. Frailty syndromes were coded in 2% to 24% of patient spells. Falls and fractures was the most common syndrome coded (24%). The Dr Foster Global Frailty Score was significantly associated with in-hospital mortality, 30-day non-elective readmission and long length of hospital stay. The score had significant predictive capacity beyond that of other known predictors of poor outcome in older persons, such as comorbidity and chronological age. The score’s predictive capacity was higher in the elective group compared with non-elective, and may reflect improved performance in lower acuity states.ConclusionsFrailty syndromes can be coded in international secondary care administrative data sets. The Dr Foster Global Frailty Score significantly predicts key outcomes. This methodology may be feasibly utilised for case-mix adjustment for older persons internationally.


2009 ◽  
Vol 21 (7) ◽  
pp. 2049-2081 ◽  
Author(s):  
Takashi Takenouchi ◽  
Shin Ishii

In this letter, we present new methods of multiclass classification that combine multiple binary classifiers. Misclassification of each binary classifier is formulated as a bit inversion error with probabilistic models by making an analogy to the context of information transmission theory. Dependence between binary classifiers is incorporated into our model, which makes a decoder a type of Boltzmann machine. We performed experimental studies using a synthetic data set, data sets from the UCI repository, and bioinformatics data sets, and the results show that the proposed methods are superior to the existing multiclass classification methods.


Author(s):  
Nafiseh Zeinali ◽  
Karim Faez ◽  
Sahar Seifzadeh

Purpose: One of the essential problems in deep-learning face recognition research is the use of self-made and less counted data sets, which forces the researcher to work on duplicate and provided data sets. In this research, we try to resolve this problem and get to high accuracy. Materials and Methods: In the current study, the goal is to identify individual facial expressions in the image or sequence of images that include identifying ten facial expressions. Considering the increasing use of deep learning in recent years, in this study, using the convolution networks and, most importantly, using the concept of transfer learning, led us to use pre-trained networks to train our networks. Results: One way to improve accuracy in working with less counted data and deep-learning is to use pre-trained using pre-trained networks. Due to the small number of data sets, we used the techniques for data augmentation and eventually tripled the data size. These techniques include: rotating 10 degrees to the left and right and eventually turning to elastic transmation. We also applied deep Res-Net's network to public data sets existing for face expression by data augmentation. Conclusion: We saw a seven percent increase in accuracy compared to the highest accuracy in previous work on the considering dataset.


CONVERTER ◽  
2021 ◽  
pp. 598-605
Author(s):  
Zhao Jianchao

Behind the rapid development of the Internet industry, Internet security has become a hidden danger. In recent years, the outstanding performance of deep learning in classification and behavior prediction based on massive data makes people begin to study how to use deep learning technology. Therefore, this paper attempts to apply deep learning to intrusion detection to learn and classify network attacks. Aiming at the nsl-kdd data set, this paper first uses the traditional classification methods and several different deep learning algorithms for learning classification. This paper deeply analyzes the correlation among data sets, algorithm characteristics and experimental classification results, and finds out the deep learning algorithm which is relatively good at. Then, a normalized coding algorithm is proposed. The experimental results show that the algorithm can improve the detection accuracy and reduce the false alarm rate.


Author(s):  
Zhiguo Bao ◽  
Shuyu Wang

For hedge funds, return prediction has always been a fundamental and important problem. Usually, a good return prediction model directly determines the performance of a quantitative investment strategy. However, the performance of the model will be influenced by the market-style. Even the models trained through the same data set, their performance is different in different market-styles. Traditional methods hope to train a universal linear or nonlinear model on the data set to cope with different market-styles. However, the linear model has limited fitting ability and is insufficient to deal with hundreds of features in the hedge fund features pool. The nonlinear model has a risk to be over-fitting. Simultaneously, changes in market-style will make certain features valid or invalid, and a traditional linear or nonlinear model is not sufficient to deal with this situation. This thesis proposes a method based on Reinforcement Learning that automatically discriminates market-styles and automatically selects the model that best fits the current market-style from sub-models pre-trained with different categories of features to predict the return of stocks. Compared with the traditional method that training return prediction model directly through the full data sets, the experiment shows that the proposed method has a better performance, which has a higher Sharpe ratio and annualized return.


Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 778 ◽  
Author(s):  
Liu ◽  
Liu ◽  
Pan ◽  
Li ◽  
Yang ◽  
...  

For cancer diagnosis, many DNA methylation markers have been identified. However, few studies have tried to identify DNA methylation markers to diagnose diverse cancer types simultaneously, i.e., pan-cancers. In this study, we tried to identify DNA methylation markers to differentiate cancer samples from the respective normal samples in pan-cancers. We collected whole genome methylation data of 27 cancer types containing 10,140 cancer samples and 3386 normal samples, and divided all samples into five data sets, including one training data set, one validation data set and three test data sets. We applied machine learning to identify DNA methylation markers, and specifically, we constructed diagnostic prediction models by deep learning. We identified two categories of markers: 12 CpG markers and 13 promoter markers. Three of 12 CpG markers and four of 13 promoter markers locate at cancer-related genes. With the CpG markers, our model achieved an average sensitivity and specificity on test data sets as 92.8% and 90.1%, respectively. For promoter markers, the average sensitivity and specificity on test data sets were 89.8% and 81.1%, respectively. Furthermore, in cell-free DNA methylation data of 163 prostate cancer samples, the CpG markers achieved the sensitivity as 100%, and the promoter markers achieved 92%. For both marker types, the specificity of normal whole blood was 100%. To conclude, we identified methylation markers to diagnose pan-cancers, which might be applied to liquid biopsy of cancers.


Sign in / Sign up

Export Citation Format

Share Document