Various Novel Drug Delivery Systems in Treatment of Cardiovascular Diseases

2019 ◽  
Vol 7 (04) ◽  
pp. 01-04
Author(s):  
S. Gousia Begum

Cardiovascular disease the life threatens issues in the present days, which includes other diseases like angina pectoris, atherosclerosis, and myocardial infarction. The various novel drug delivery systems like transdermal patches, liposomes, micelles, nanoparticles, microbubbles, drug-eluting balloons, and an eluting drug stents are used for targeted drug delivery and improved therapeutic efficacy and showed better patient compliance in the present days.

2019 ◽  
Vol 9 (1) ◽  
pp. 2-14
Author(s):  
Sahil Kumar ◽  
Bandna Sharma ◽  
Kiran Thakur ◽  
Tilak R. Bhardwaj ◽  
Deo N. Prasad ◽  
...  

Background: Many efforts have been explored in the last decade to treat colon cancer but nanoparticulate drug delivery systems are making a vital contribution in the improvement of drug delivery to colon cancer cells. Objective: In this review, we attempt to highlight recent advancements in the development of novel drug delivery systems of nanoparticles for the targeted drug delivery to colon. Polymers like Epithelial Cell Adhesion Molecule (EpCAM) aptamer chitosan, Hyaluronic Acid (HA), Chitosan (CS)– Carboxymethyl Starch (CMS), silsesquioxane capped mesoporous silica, Near IR (NIR) fluorescent Human Serum Albumin (HAS), poly(ethylene glycol)-conjugated hyaluronic acid etc. have been discussed by employing various anticancer drugs like doxorubicin, oxaliplatin, paclitaxel, 5-fluorouracil etc. Conclusion: These novel drug delivery systems have been determined to be more efficacious in terms of stability, sustained and targeted drug delivery, therapeutic efficacy, improved bioavailability and enhanced anticancer activity.


2018 ◽  
Vol 8 (5-s) ◽  
pp. 100-104 ◽  
Author(s):  
Abhay Kumar

Novel drug delivery systems are now a day is creating a new interest in development of drug deliveries. The transdermal route of drug delivery has gained great interest of pharmaceutical research, as it circumvents number of problems associated with oral route of drug administration. Transferosomes are capable of transdermal delivery of low as well as high molecular weight drugs. This offers several potential advantages over conventional routes like avoidance of first pass metabolism, predictable and extended duration of activity, minimizing undesirable side effects, utility of short half life drugs, improving physiological and pharmacological response and have been applied to increases the efficiency of the material transfer across the intact skin, by the use of penetration enhancers and non-ionic surfactant vesicles. It is suitable for controlled and targeted drug delivery and it can accommodate drug molecules with wide range of solubility. Due to its high deformability it gives better penetration of intact vesicles. Transferosome possess an infrastructure consisting of hydrophobic and hydrophilic moieties together and as a result can accommodate drug molecules with wide range of solubility. They are biocompatible and biodegradable as they are made from natural phospholipids and have high entrapment efficiency. In this review, we have focused on transferosome with discussions on novel drug delivery systems for targeted delivery of therapeutics and important issues and challenges for future clinical applications. Keywords: Novel drug delivery systems, Transferosomes, Transdermal drug delivery, Targeted drug delivery


2016 ◽  
Vol 17 (1-2) ◽  
Author(s):  
Julia Modrejewski ◽  
Johanna-Gabriela Walter ◽  
Imme Kretschmer ◽  
Evren Kemal ◽  
Mark Green ◽  
...  

AbstractThe purpose of this study was to develop a model system for targeted drug delivery. This system should enable targeted drug release at a certain tissue in the body. In conventional drug delivery systems, drugs are often delivered unspecifically resulting in unwarranted adverse effects. To circumvent this problem, there is an increasing demand for the development of intelligent drug delivery systems allowing a tissue-specific mode of delivery. Within this study, nanoparticles consisting of two biocompatible polymers are used. Because of their small size, nanoparticles are well-suited for effective drug delivery. The small size affects their movement through cell and tissue barriers. Their cellular uptake is easier when compared to larger drug delivery systems. Paclitaxel was encapsulated into the nanoparticles as a model drug, and to achieve specific targeting an aptamer directed against lung cancer cells was coupled to the nanoparticles surface. Nanoparticles were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FTIR), and nanotracking analysis (NTA). Also their surface charge was characterized from ζ-potential measurements. Their preparation was optimized and subsequently specificity of drug-loaded and aptamer-functionalized nanoparticles was investigated using lung cancer cells.


Drug Delivery ◽  
2017 ◽  
Vol 24 (1) ◽  
pp. 707-719 ◽  
Author(s):  
Jiajiang Xie ◽  
Yanxiu Li ◽  
Liang Song ◽  
Zhou Pan ◽  
Shefang Ye ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document