scholarly journals Utilization of Waste Plastic and Recycle Concrete Aggregate in Production of Hot Mix Asphalt

2017 ◽  
Vol 7 (4) ◽  
pp. 322-330 ◽  
Author(s):  
Basim H. Al-Humeidawi

Recycling of waste material is a recent technique aims to change the waste material into new products to reduce the pollution and detrimental effect on the environment and reduce the demand of new fresh natural sources. Plastic bags and Recycled Concrete Aggregate (RCA) are samples of these waste materials can be re-used in road construction. Over one million bags are used every minute worldwide, whereas, aggregate is consist of about 95% of asphalt mixture and can be obtained as RCA from demolished infrastructure. This paper presents laboratory tests results of using waste plastic and RCA in production of asphalt mixture. Since the cement past attached to RCA particles contribute to lower their density and increase the porosity, the waste plastic are used to enhance the engineering properties of asphalt mixture and consume these large amount of waste material. The results showed that Waste Plastic Modified Bitumen (WPMB) mix containing 100% RCA produces higher Marshall Stability, higher retained stability and higher indirect tensile strength compared with conventional mix. The percents of the increase were 10% for Marshall Stability, 7% for Marshall retained stability and 9% for higher indirect tensile

2016 ◽  
Vol 700 ◽  
pp. 227-237 ◽  
Author(s):  
Siti Nur Amiera Jeffry ◽  
Ramadhansyah Putra Jaya ◽  
Norhafizah Manap ◽  
Nurfatin Aqeela Miron ◽  
Norhidayah Abdul Hassan

Significant quantities of coconut shell (CS), a by-product of agriculture, can be used as an artificial source of coarse aggregates. In this study, four CSs were used as coarse aggregates replacement in asphalt concrete with 0%, 10%, 20%, 30%, and 40% weight volumes. The particle sizes of the CSs used as main coarse aggregates range from 5 mm to 20 mm. The Marshall Stability test shows that the optimum bitumen content for asphalt mixtures is 5.1%. The engineering properties investigated include the volumetric, dynamic creep, indirect tensile strength, and resilient modulus. Test results show that stability decreases with increasing CS content because of high water absorption. Considering that CSs absorb bitumen, a further detailed investigation is needed to assess the performance of modified bitumen on mixture. Furthermore, the use of CSs as coarse aggregates in asphalt concrete help increase the resilient modulus, stiffness, and indirect tensile strength up to 30%. Generally, a 10% replacement of coarse aggregates with CSs is the optimal limit.


Recycling ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 49
Author(s):  
Nuha Mashaan ◽  
Amin Chegenizadeh ◽  
Hamid Nikraz

Commercial polymers have been used in pavement modification for decades; however, a major drawback of these polymers is their high cost. Waste plastic polymers could be used as a sustainable and cost-effective additive for improving asphalt properties, attaining combined environmental–economic benefits. Since 2019, in Australia, trial segments of roads have been built using waste materials, including plastic, requiring that laboratory evaluations first be carried out. This study aims to examine and evaluate the effect of using a domestic waste plastic, polyethylene terephthalate (PET), in modifying C320 bitumen. The assessment of several contents of PET-modified bitumen is carried out in two phases: modified bitumen binders and modified asphalt mixtures. Dynamic shear rheometer (DSR) and rolling thin film oven tests (RTFOT) were utilised to investigate the engineering properties and visco-elastic behaviour of plastic-modified bitumen binders. For evaluating the engineering properties of the plastic-modified asphalt mixtures, the Marshall stability, Marshall flow, Marshall quotient and rutting tests were conducted. The results demonstrated that 6–8% is the ideal percentage of waste plastic proposed to amend and enhance the stiffness and elasticity behaviour of asphalt binders. Furthermore, the 8% waste PET-modified asphalt mixture showed the most improvement in stability and rutting resistance, as indicated by increased Marshal stability, increased Marshall quotient and decreased rut depth. Future fatigue and modulus stiffness tests on waste plastic-modified asphalt mixtures are suggested to further investigate the mechanical properties.


2015 ◽  
Vol 76 (14) ◽  
Author(s):  
Tay Lay Ting ◽  
Ramadhansyah Putra Jaya ◽  
Norhidayah Abdul Hassan ◽  
Haryati Yaacob ◽  
Dewi Sri Jayanti

This paper provides a review of utilization coconut shell and coconut fiber in road construction. Coconut shell and coconut fiber are new waste materials used in highway industry. Some studies showed that coconut fiber can increase the stability, skid resistance and resilient modulus while coconut shell can improve the indirect tensile strength and static creep behavior of the modified asphalt pavement. In contrast, coconut fiber does not improve the fatigue life of the modified bituminous mixes. In general, the previous research illustrates that coconut shell and coconut fiber significantly improves the engineering properties of asphalt mixtures when mixed with modified bitumen.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 575
Author(s):  
Sanja Dimter ◽  
Miroslav Šimun ◽  
Martina Zagvozda ◽  
Tatjana Rukavina

Today, the road construction profession is more than ever facing limited and increasingly expensive resources for component materials of asphalt mixtures, which has also led to the need for continuous research on the use of waste materials. One such potentially usable waste material is ash obtained by the combustion of wood biomass that is used to produce heat and electricity. The goal of this paper is to ascertain the possibility of using wood ash (WA) as the filler in asphalt concrete mixtures for the base-wearing layers of a pavement. The properties of Marshall stability (MS), quotient (MQ) and deformations, and the indirect tensile strength of water-conditioned samples and dry samples were tested on asphalt samples of an AC16 surf mixture with different contents of wood ash as the filler. The obtained values of MS and MQ indicate that a 50% content of bio ash in the filler results in an increase in asphalt’s resistance to the appearance of plastic deformations and greater tensile strength and in good asphalt resistance to the action of water.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7060
Author(s):  
Mohammad Alharthai ◽  
Qing Lu ◽  
Ahmed Elnihum ◽  
Asad Elmagarhe

This study investigates the substitution of conventional aggregate with a Florida washed shell in open-graded asphalt mixtures and evaluates the optimal substitution percentage in aggregate gradations of various nominal maximum aggregate sizes (NMASs) (i.e., 4.75, 9.5, and 12.5 mm). Laboratory experiments were performed on open-graded asphalt mixture specimens with the coarse aggregate of sizes between 2.36 and 12.5 mm being replaced by the Florida washed shell at various percentages (0, 15, 30, 45, and 100%). Specimen properties relevant to the performance of open-graded asphalt mixtures in the field were tested, evaluated, and compared. Specifically, a Marshall stability test, Cantabro test, indirect tensile strength test, air void content test, and permeability test were conducted to evaluate the strength, resistance to raveling, cracking resistance, void content, and permeability of open-graded asphalt mixtures. The results show that there is no significant difference in the Marshall stability and indirect tensile strength when the coarse aggregates are replaced with Florida washed shell. This study also found that the optimum percentages of Florida washed shell in open-graded asphalt mixture were 15, 30, and 45% for 12.5, 9.5, and 4.75 mm NMAS gradations, respectively.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2528 ◽  
Author(s):  
Yueqin Hou ◽  
Xiaoping Ji ◽  
Jia Li ◽  
Xianghang Li

To study and evaluate the adhesion between recycled concrete aggregate and asphalt, the contact angles (CAs) between droplet (water and ethanol) and recycled concrete aggregate (RCA), natural aggregates, and solid bitumen (matrix asphalt, SBS modified asphalt) were tested via the sessile drop method with an optical microscope. The surface free energy was then calculated. The CAs between hot asphalt and RCA and natural aggregates were tested via the hanging slice method. The adhesive energy between asphalt and RCA and natural aggregates were calculated based on the test results of the surface free energy and CAs. Then, the influence of RCA on the water stability and fatigue performance of the asphalt mixture was analyzed by testing the water stability and fatigue properties of hot mix asphalts containing RCA (HMA-RCA) with different aggregates and RCA dosages. The surface energy of the various aggregates and the CAs between aggregates and asphalts were sorted as follows: Granite > RCA > serpentinite > limestone. The surface energy and CA of RCA were very close to that of serpentinite. The adhesive energy between various aggregates and asphalt were sorted as follows: Limestone > serpentinite > RCA > granite. The adhesive energy between RCA and asphalt was also very close to that of serpentinite. The residual Marshall stability, tensile strength ratio, and fatigue performance of the HMA-RCAs were gradually reduced along with the increasing RCA dosage. This effect may be attributed to the fact that the adhesive energy between the RCA and the asphalt was less than that of water and that the asphalt was easily stripped from the RCA surface. Excessive RCA content in the aggregate can lead to excessive porosity of the HMA-RCA. The CAs and adhesive energy between RCA and asphalt showed significant effects on the water stability and fatigue performance of HMA-RCA.


RSC Advances ◽  
2015 ◽  
Vol 5 (44) ◽  
pp. 34854-34863 ◽  
Author(s):  
Zhong-Yao Pan ◽  
Gengying Li ◽  
Cheng-Yu Hong ◽  
Hui-Ling Kuang ◽  
Yu Yu ◽  
...  

Recycled concrete aggregate (RCA) was pretreated by microbial calcite precipitation. The surface treatment reduced the porosity and permeability of RCA by 32% and 86.5%, respectively. The treatment improved the bonding strength of RCA–asphalt binder by 55%.


2012 ◽  
Vol 49 (7) ◽  
pp. 796-811 ◽  
Author(s):  
A. Arulrajah ◽  
J. Piratheepan ◽  
M.W. Bo ◽  
N. Sivakugan

This paper presents the findings of a laboratory investigation on the characterization of recycled crushed brick when blended with recycled concrete aggregate and crushed rock for pavement sub-base applications. The engineering properties of the crushed brick blends were compared with typical state road authority specifications in Australia for pavement sub-base systems to ascertain the potential use of crushed brick blends in these applications. The experimental programme included particle-size distribution, modified Proctor compaction, particle density, water absorption, California bearing ratio (CBR), Los Angeles abrasion, pH, organic content, and repeated load triaxial tests. Laboratory tests were undertaken on mixtures of 10%, 15%, 20%, 25%, 30%, 40%, and 50% crushed brick blended with recycled concrete aggregate or crushed rock. The research indicates that up to 25% crushed brick could be safely added to recycled concrete aggregate and crushed rock blends in pavement sub-base applications. The repeated load triaxial test results on the blends indicate that the effects of crushed brick content on the mechanical properties in terms of permanent deformation and resilient modulus of both the recycled concrete aggregate and crushed rock blends were marginal compared to the effects on dry density and moisture content.


Sign in / Sign up

Export Citation Format

Share Document