scholarly journals Practice and perspectives of using ultrasensitive magnetometers in biomedical research.

Author(s):  
Yu.V. Maslennikov ◽  
◽  
◽  

There are a large number of sensors for measuring the magnetic field of biological objects. They are characterized by the type of the measured physical parameter (magnetic field strength, magnetic flux, etc.), the level of intrinsic sensitivity, and the frequency range of the recorded signals. The long-term practice of studying biomagnetic signals shows that only SQUID-based magnetometers and optically pumped magnetometers have sensitivity levels sufficient for recording biomagnetic signals with the required signal-to-noise ratio. This chapter reflects the main directions of using such magnetometers and methods of magnetic measurements in biomedical research, gives examples of existing technical solutions, and shows possible ways of their further development.

1994 ◽  
Vol 144 ◽  
pp. 29-33
Author(s):  
P. Ambrož

AbstractThe large-scale coronal structures observed during the sporadically visible solar eclipses were compared with the numerically extrapolated field-line structures of coronal magnetic field. A characteristic relationship between the observed structures of coronal plasma and the magnetic field line configurations was determined. The long-term evolution of large scale coronal structures inferred from photospheric magnetic observations in the course of 11- and 22-year solar cycles is described.Some known parameters, such as the source surface radius, or coronal rotation rate are discussed and actually interpreted. A relation between the large-scale photospheric magnetic field evolution and the coronal structure rearrangement is demonstrated.


2014 ◽  
Vol 1 (1) ◽  
Author(s):  
G. Tosolini ◽  
J. M. Michalik ◽  
R. Córdoba ◽  
J. M. de Teresa ◽  
F. Pérez-Murano ◽  
...  

AbstractWe present the magnetic characterization of cobalt wires grown by focused electron beam-induced deposition (FEBID) and studied using static piezoresistive cantilever magnetometry. We have used previously developed high force sensitive submicron-thick silicon piezoresistive cantilevers. High quality polycrystalline cobalt microwires have been grown by FEBID onto the free end of the cantilevers using dual beam equipment. In the presence of an external magnetic field, the magnetic cobalt wires become magnetized, which leads to the magnetic field dependent static deflection of the cantilevers. We show that the piezoresistive signal from the cantilevers, corresponding to a maximum force of about 1 nN, can be measured as a function of the applied magnetic field with a good signal to noise ratio at room temperature. The results highlight the flexibility of the FEBID technique for the growth of magnetic structures on specific substrates, in this case piezoresistive cantilevers.


1970 ◽  
Vol 48 (3) ◽  
pp. 362-366
Author(s):  
M. Abbas

Absorption of hydromagnetic waves in the ionosphere propagated normal to the magnetic field is calculated at various frequencies and compared with the absorption for parallel propagation. Data corresponding to both daytime and nighttime ionospheres are used. Waves propagated normal to the magnetic field are highly absorbed through the daytime ionosphere at frequencies above a few Hz; the nighttime ionosphere, however, is virtually transparent to waves in the frequency range of 10−3 to 20 Hz. A comparison of the absorption processes for waves propagated parallel and normal to the magnetic field is made.


2020 ◽  
Vol 494 (2) ◽  
pp. 3014-3027
Author(s):  
M Armano ◽  
H Audley ◽  
J Baird ◽  
P Binetruy ◽  
M Born ◽  
...  

ABSTRACT LISA Pathfinder (LPF) has been a space-based mission designed to test new technologies that will be required for a gravitational wave observatory in space. Magnetically driven forces play a key role in the instrument sensitivity in the low-frequency regime (mHz and below), the measurement band of interest for a space-based observatory. The magnetic field can couple to the magnetic susceptibility and remanent magnetic moment from the test masses and disturb them from their geodesic movement. LPF carried on-board a dedicated magnetic measurement subsystem with noise levels of 10 $\rm nT \ Hz^{-1/2}$ from 1 Hz down to 1 mHz. In this paper we report on the magnetic measurements throughout LPF operations. We characterize the magnetic environment within the spacecraft, study the time evolution of the magnetic field and its stability down to 20 μHz, where we measure values around 200 $\rm nT \ Hz^{-1/2}$, and identify two different frequency regimes, one related to the interplanetary magnetic field and the other to the magnetic field originating inside the spacecraft. Finally, we characterize the non-stationary component of the fluctuations of the magnetic field below the mHz and relate them to the dynamics of the solar wind.


2021 ◽  
Vol 55 (6) ◽  
pp. 50-55
Author(s):  
S.A. Pineguin ◽  
◽  
O.A. Dadasheva ◽  
E.I. Mednikova ◽  
O.A. Grushina ◽  
...  

Expectation of remote space missions and long-term stay and work on the Moon with the magnetic field 1,000 times weaker than on Earth sets the researchers the formidable task to investigate effects of the hypomagnetic environment on living organisms. The paper reports data about the liver and spleen development in Japanese quail embryos of various age exposed in a modeled lunar magnetic field. Retardation of hemopoiesis was observed as in the first generation embryos (F1), so in sequential embryo generations developed in the ordinary magnetic environment (F2).


2006 ◽  
Vol 24 (12) ◽  
pp. 3411-3419 ◽  
Author(s):  
D. Martini ◽  
K. Mursula

Abstract. We study here the recently proposed measure of local geomagnetic activity called the IHV (Inter-Hour Variability) index calculated for the Eskdalemuir (ESK) station. It was found earlier that the ESK IHV index depicts an artificial, step-like increase from 1931 to 1932. We show here that this increase is due to the fact that the values of the magnetic field components of the ESK observatory stored at the World Data Center are two-hour running averages of hourly data stored in ESK yearbooks. Two-hour averaging greatly reduces the variability of the data which leads to artificially small values of the IHV index in 1911–1931. We also study the effect of two-hour averaging upon hourly mean and spot values using 1-minute data available for recent years, and calculate the correction factors for the early years, taking into account the weak dependence of correction factors on solar activity. Using these correction factors, we correct the ESK IHV indices in 1912–1931, and revise the estimate of the centennial change based on them. The effect of correction is very significant: the centennial increase in the ESK IHV-raw (IHV-cor) index in 1912–2000 changes from 73.9% (134.4%) before correction to 10.3% (25.3%) thereafter, making the centennial increase at ESK quite similar to other mid-latitude stations. Obviously, earlier long-term studies based on ESK IHV values are affected by the correction and need to be revised. These results also strongly suggest that the ESK yearbook data should be digitized and the hourly ESK data at WDC should be replaced by them.


1996 ◽  
Vol 160 ◽  
pp. 279-282
Author(s):  
Michael Kramer ◽  
Kiriaki M. Xilouris

AbstractWe report flux density measurements, polarimetric and timing observations of pulsars made at the highest radio frequencies to date, covering the widest frequency range from 1.4 GHz to 86 GHz. We find that the magnetic field maintains its dipolar structure throughout the active part of the magnetosphere, a region located close to the stellar surface and confined to a small slab of a few stellar radii. The change in width and shape of pulse profiles saturates at mm-wavelengths while the depolarization accelerates, leading to almost completely depolarized emission. Two pulsars seem to exhibit a turn-up in their flux density spectrum at mm-wavelengths.


2020 ◽  
Vol 10 (23) ◽  
pp. 8454
Author(s):  
Soontorn Odngam ◽  
Chaiyut Preecha ◽  
Prapaiwan Sanwong ◽  
Woramet Thongtan ◽  
Jiraphon Srisertpol

This research presents the design and construction of measuring instruments for a dipole magnetic field using a rotating coil technique. This technique is a closed-loop speed-control system where a Proportional-Integral (PI) controller works together with the intensity measurement of the magnetic field through the rotating coil. It was used to analyze the impact on the accuracy of the electromagnetic at speed ranges of 60, 90, and 120 rpm. The error estimation in the measurement of the normal dipole and skew dipole magnet caused by the steady-state error of the speed control system and the rotational search coil in whirling motion are demonstrated. Rotating unbalance, shaft coupling, and misalignment from its setup disturbed the performance of the speed control system as a nonlinear system.


1973 ◽  
Vol 186 ◽  
pp. 211 ◽  
Author(s):  
E. F. Borra ◽  
M. M. Dworetsky

2019 ◽  
Vol 484 (4) ◽  
pp. 4495-4506 ◽  
Author(s):  
S Hubrig ◽  
M Küker ◽  
S P Järvinen ◽  
A F Kholtygin ◽  
M Schöller ◽  
...  

Abstract Only 11 O-type stars have been confirmed to possess large-scale organized magnetic fields. The presence of a −600 G longitudinal magnetic field in the O9.7 V star HD 54879 with a lower limit of the dipole strength of ∼2 kG was discovered a few years ago in the framework of the ESO large program ‘B-fields in OB stars’. Our FORS 2 spectropolarimetric observations from 2017 October 4 to 2018 February 21 reveal the presence of short- and long-term spectral variability and a gradual magnetic field decrease from about −300 G down to about −90 G. Different scenarios are discussed in an attempt to interpret our observations. Our FORS 2 radial velocity measurements indicate that HD 54879 is a member of a long-period binary.


Sign in / Sign up

Export Citation Format

Share Document