scholarly journals Pre-treatment of industrial landfill leachate by Fenton’s oxidation

2013 ◽  
Vol 9 (1) ◽  
pp. 51-56

Biological treatment (aerobic and anaerobic) of industrial landfill leachate is limited by the presence of toxic contaminants (e.g., heavy metals) and recalcitrant (biopersistent) organics (e.g., polyphenols, pharmaceuticals, cosmetics, etc.,), hindering viable conditions for biomass proliferation in biological reactors, with difficulties in meeting concentration limits imposed by applied regulations. Fenton’s oxidation by the use of Fe2+-H2O2-H+ mixture may be used as a pre-treatment of industrial landfill leachate for preliminary abatement of the organic load and to improve biodegradability (BOD/COD>0.4) to favour biological oxidation in conventional wastewater treatment plants. Leachate from Grottaglie (S.E. Italy) non-hazardous landfill (pH 8.6; COD=11.000 mg l-1; BOD5=2.400 mg l-1; NH4-N=2.900 mg l-1; conductivity=60.000 μS cm-1) was laboratory tested in different operative conditions, i.e., initial pH, Fe2+/H2O2 ratio, concentrations and reaction time. The oxidation reaction was monitored by equilibrium pH and residual COD and BOD5 concentrations. Best operative conditions were obtained at pH 3, Fe2+=700 mg l-1, H2O2=9,900 mg l-1 (H2O2/Fe2+ratio~13w/w), reaction time=2h. Following the oxidation reaction, solution pH was neutralized by the addition of Ca(OH)2 or NaOH (120 meq l-1) for further abatement of target parameters by precipitation/sorption. Preliminary technical/economical evaluation of possible process schemes is also given in the paper.

Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1026
Author(s):  
Javier Tejera ◽  
Antonio Gascó ◽  
Daphne Hermosilla ◽  
Víctor Alonso-Gomez ◽  
Carlos Negro ◽  
...  

The objective of this trial was to assess the application of UVA-LED technology as an alternative source of irradiation for photo-Fenton processes, aiming to reduce treatment costs and provide a feasible treatment for landfill leachate. An optimized combination of coagulation with ferric chloride followed by photo-Fenton treatment of landfill leachate was optimized. Three different radiation sources were tested, namely, two conventional high-pressure mercury-vapor immersion lamps (100 W and 450 W) and a custom-designed 8 W 365 nm UVA-LED lamp. The proposed treatment combination resulted in very efficient degradation of landfill leachate (COD removal = 90%). The coagulation pre-treatment removed about 70% of the COD and provided the necessary amount of iron for the subsequent photo-Fenton treatment, and it further favored this process by acidifying the solution to an optimum initial pH of 2.8. The 90% removal of color improved the penetration of radiation into the medium and by extension improved treatment efficiency. The faster the Fenton reactions were, as determined by the stoichiometric optimum set-up reaction condition of [H2O2]0/COD0 = 2.125, the better were the treatment results in terms of COD removal and biodegradability enhancement because the chances to scavenge oxidant agents were limited. The 100 W lamp was the least efficient one in terms of final effluent quality and operational cost figures. UVA-LED technology, assessed as the application of an 8 W 365 nm lamp, provided competitive results in terms of COD removal, biodegradability enhancement, and operational costs (35–55%) when compared to the performance of the 450 W conventional lamp.


2014 ◽  
Vol 926-930 ◽  
pp. 4402-4405
Author(s):  
Qiang Zhan ◽  
Xiao Jun Xu ◽  
Jing Zhao ◽  
Tian Guo Li

The effect of electrolysis-enhanced micro-electrolysis fluidized bed technology on treating cooper-containing wastewater had been systematic researched. Operation conditions including applied flow rate, voltage, solution pH and reaction time on the copper ions (Cu2+) removal effect, had been studied scanning electron microscope (SEM) analysis had been used to characterize the surface features of copper crystals in the fillers surface. The results show that the Cu2+ mainly removed by electrochemical deposition, the optimum operation conditions are: flow rate is 22mm/s, voltage is 12V, initial pH=4, the response time of 30 min.


2020 ◽  
Vol 382 ◽  
pp. 121213 ◽  
Author(s):  
Syeed Md Iskander ◽  
Teng Zeng ◽  
Elizabeth Smiley ◽  
Stephanie C. Bolyard ◽  
John T. Novak ◽  
...  

2002 ◽  
Vol 46 (9) ◽  
pp. 323-330 ◽  
Author(s):  
A.F. Aydin ◽  
M. Altinbas ◽  
M.F. Sevimli ◽  
I. Ozturk ◽  
H.Z. Sarikaya

The purpose of this study was to investigate an effective treatment system which can be applicable to treat opium alkaloid industry (OAI) effluents characterised with high COD, TKN, dark color and non-biodegradable organic pollutants. In the first phase of the study, lab-scale anaerobic (UASBR) + aerobic (SBR) treatability studies were carried out on opium processing industry effluents. Effluent CODs from the two staged biological treatment system were relatively high (∼700 mgl−1) and additional post treatment was required. Physico-chemical treatability studies previously carried out on the effluent of opium alkaloid wastewater treatment plant, were not effective in removing residual COD and color. In the second phase of the study, the refractory organics causing higher inert COD values in the SBR effluent were additionally treated by using Fenton's Oxidation. The batch tests were performed to determine the optimum operating conditions including pH, H2O2 dosage, molar ratio of Fe2+/H2O2 and reaction time. It was found that removal efficiencies of COD and color for 30 minutes reaction time were about 90% and 95%, respectively. The ratio of H2O2/FeSO4 was determined as 200 mgl−1/600 mgl−1 for the optimum oxidation and coagulation process at pH 4. Experimental results of the present study have clearly indicated that the Fenton's oxidation technology is capable to treat almost all parts of the organics which consist of both soluble initial and microbial inert fractions of COD for opium alkaloid industry effluents. Effluents from the Fenton's Oxidation process can satisfy effluent standards for COD and color in general.


2019 ◽  
Vol 57 (6) ◽  
pp. 724
Author(s):  
Son Thanh Le ◽  
Khai Cao LE

Landfill leachate is a high-strength wastewater that is most difficult to deal with because the fluctuating of composition and quality as well as high concentration of specific pollutants (PAH, PCBs, heavy metals) and very high ammonia nitrogen and COD concentrations. So, after a pre-treatment as electrocoagulation, over 73% of COD has been treated from Nam Son landfill leachate, however the output value of COD still exceeds the QCVN 40:2011/BTNMT, column B. So, an electro-fenton process was employed to secondarily treat Nam Son landfill leachate, after an electrocoagulation pre-treatment.  This electro-fenton system used a Pt gauze anode and a commercial carbon felt cathode to electrogenerate in situ hydrogen peroxide and regenerate ferrous ion as catalyst. In this study, the effects of various operating conditions such as initial pH, concentration of Fe2+ catalyst, current applied on reduction of COD in Nam Son landfill leachate were examined. At the optimal condition: applied current of 1A, pH 3, Fe2+ concentration of 0.1m M, Na2SO4 concentration of 0.05 M, 77.2% COD reduction can be reached within 60 min and the output value of COD is 130.9 mg.L-1, according to QCVN 40:2011/BTNMT, column B. The research results indicated that electro-fenton process can promise as a potential method in practice for secondary treatment of landfill leachate.


2010 ◽  
Vol 62 (1) ◽  
pp. 209-216 ◽  
Author(s):  
Idil Arslan-Alaton ◽  
B. Hande Gursoy ◽  
Abdurahman Akyol ◽  
Mehmet Kobya ◽  
Mahmut Bayramoglu

In the present study, Fenton's oxidation of a chromium complex disazo dye (Acid Blue 193) synthesis wastewater was evaluated, modeled and optimized by employing Central Composite Design. Within this context, the individual and interactive effects of critical process parameters such as Fe2 + , H2O2 concentrations, initial chemical oxygen demand (COD) and reaction time was assessed. The process response (output) variables were chosen as percent color, COD and total organic carbon (TOC) removal efficiencies. Optimum working conditions in terms of color and organic carbon removals were established to be Fe2 +  = 3 mM; H2O2 = 25 mM; reaction time = 10 min at pH 3 and an initial COD content of 245 mg/L. Under these conditions, 96% color, 82% COD and 51% TOC removals were obtained. The established polynomial regression models describing color, COD and TOC removals satisfactorily fitted the experimental data and could be used to predict Fenton's treatment results at statistically significant rates. Optimized treatment results were compared with those obtained via electrocoagulation treatment under optimized conditions (applied current = 50 A/m2; reaction time = 15 min; initial pH = 7 for an initial COD content of 245 mg/L). The relative inhibition of heterotrophic oxygen uptake rate was measured to examine the inhibitory effect of azo dye synthesis effluent before and after Fenton's oxidation and electrocoagulation with respect to synthetic domestic wastewater. Untreated azo dye production wastewater exhibited a slightly inhibitory effect that was appreciably reduced but not entirely removed after Fenton's oxidation, whereas no inhibition of mixed bioculture was observed for azo dye synthesis effluent subjected to electrocoagulation treatment.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Naveen Kumar Chaturvedi ◽  
Surjit Singh Katoch

Abstractp-Anisidine being a component of wastewater generated through dye and pharmaceutical industries is highly toxic and carcinogenic in nature. Therefore, its presence in wastewater requires prior treatment before its disposal from the point of safety of human and aquatic life. Fenton’s oxidation is a type of advanced oxidation processes which is efficient, ecofriendly and reliable, and this was not studied for the removal of p-anisidine from wastewater. In this study, the effect of influent pH, hydrogen peroxide (H2O2) concentration and ferrous ion (Fe2+) concentration on the removal of p-anisidine by Fenton’s reagent was carried out on a laboratory scale. All samples were examined for initial and final concentrations of p-anisidine using UV–Vis spectrophotometry, and also initial and final COD was analyzed. p-Anisidine shows maximum absorbance at 296 nm. At pH 2.5 and [H2O2]/[Fe2+] of 70:1 for the initial p-anisidine concentration of 0.5 mM and for 24 h reaction time, the maximum removal of p-anisidine was found to be 88.95% and maximum COD removal was 76.43%.


Sign in / Sign up

Export Citation Format

Share Document